درس‌نامه‌ها و جزوه‌های ریاضی
سوالات و پاسخنامه تشريحي کنكور
نمونه سوالات امتحانات ریاضی
نرم افزارهای ریاضیات

کانال سایت ریاضی سرا در تلگرام:
https://t.me/riazisara (@riazisara)
ایاد آوری اعداد صحیح: اعداد صحیح از سه دسته تشکیل شده‌اند: (اعداد مثبت و عدد صفر و اعداد منفی)

نکته: اعداد صحیح را به حرف انگلیسی Z نمایش می‌دهند: \{\ldots, -1, -2, 0, 1, 2, \ldots \}

جمع و تفریق اعداد صحیح: ابتدا اعداد را مختصر کرده سپس اعداد باشند دو عدد را کم کنیم. در صورتی که عدد بزرگتر باشد عدد بزرگتر را به عنوان جواب می‌گذاریم.

مثال: حاصل عبارت را به دست آورید؟

\[(−11) + (12) − (−7) = 10 + 7 = 17 \]

ضرب و تقسیم اعداد صحیح:

ابتدا علامت‌ها را در هم ضرب کنیم سپس اعداد را با توجه به علامت بین آن‌ها ضرب یا تقسیم می‌کنیم.

مثال: حاصل عبارت را به دست آورید?

\[(−24) ÷ (−8) = 3 \]

اولویت‌های ریاضی:

1) داخل مجموعه یا کروشه یا پرانتز
2) توان و جذر
3) ضرب و تقسیم (از چپ به راست)
4) جمع و تفریق

مثال: حاصل عبارت زیر با توجه به ترتیب عملیات به دست آورید؟

\[3 = 1 - 5 ÷ 6 + 9 - 4 ÷ 2 = 1 - 5 ÷ 6 + 9 - 2 = 1 - 5 ÷ 6 + 9 = 1 - 5 ÷ 2 = 1 - 2 = -1 \]

نکته: برای اعداد جبری ترتیب عملیات‌ها به‌طور مشابه می‌باشد.

مثال: حاصل عبارت زیر را به دست آورید؟

\[3 = 1 - 5 ÷ 6 + 9 - 4 ÷ 2 = 1 - 5 ÷ 6 + 9 - 2 = 1 - 5 ÷ 2 = 1 - 2 = -1 \]

دادن‌لود از سایت ریاضی سرا

www.riazisara.ir
اعداد گویا

اعداد گویا هر عددی که به کسر تبدیل شود عدد گویا نام دارد. (صورت و مخرج عدد صحیح و مخرج مخالف صفر باشند)

\[Q = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\} \]

نکته: اعداد گویا را با حرف انگلیسی \(Q \) نمایش می‌دهند.

جمع و تفریق اعداد گویا (اعداد کسری): ابتدا اعداد را مختصر کرده سپس مخرج مشترک می‌گیریم. که بهترین مخرج همان (ک.م.م) مخرج ها است.

مثال: حاصل جمع و تفریق های زیر را به دست آورید?

\[
\left(\frac{3}{4} + \frac{1}{5} \right) - \left(\frac{1}{2} + \frac{1}{3} \right) = \frac{15}{12} - \frac{6}{12} = \frac{9}{12} = \frac{3}{4}
\]

ضرب اعداد گویا: ابتدا در ضرب اعداد را ساده کنید سپس صورت و مخرج در مخرج ضرب می‌کنیم.

مثال: حاصل ضرب های زیر را به دست آورید?

\[
\left(\frac{3}{4} \times \frac{2}{5} \right) = \frac{3}{4} \times \frac{2}{5} = \frac{6}{20} = \frac{3}{10}
\]

تقسیم اعداد گویا: تقسیم به ضرب تبدیل می‌شود یعنی کسر اولی را در کسر دوم ضرب کرده و حاصل را به دست می‌آوریم.

مثال: حاصل تقسیم های زیر را به دست آورید?

\[
\left(\frac{4}{3} \div \frac{1}{2} \right) = \left(\frac{4}{3} \times \frac{2}{1} \right) = \frac{8}{3}
\]

نکته: توشتن عددی گویا بین هر دو عدد گویا به جنگ روش است که دو روش کاربردی آن:

1) صورت ها با هم و مخرج ها با هم جمع می‌کنیم
2) ابتدا مخرج مشترک گرفته سپس صورت و مخرج را در یک واحد بیشتر از تعداد خواسته شده ضرب کنیم.

مثال: بین \(\frac{3}{4} \) و \(\frac{5}{6} \) عدد گویا بنویسید؟

\[
\frac{3}{4} = \frac{15}{20}, \quad \frac{5}{6} = \frac{16}{20}
\]

روش اول

\[
\frac{7}{12}, \quad \frac{11}{14}
\]

روش دوم

\[
\frac{4}{5}, \quad \frac{6}{7}
\]

www.riazisara.ir
شمارنده (مقسوم علیه) یک عدد: بپذیریم عدد داده شده بر آن عدد دو شمارنده داشته باشد. عدد اول نام گرفته می‌شود.

عدد اول: عددی که فقط دو شمارنده دارد. عدد اول نام دارند.

عدد طبیعی به سه دسته تقسیم می‌شوند: عدد یک) -اعداد مرکب (نسبت به هم اول) دو عدد متباین آن دو عدد متباین هستند. یکاگر (ب.م.م) (بزرگترین شمارنده مشترک) دو عدد مانند:

\[(14, 15) = 1\]

\[(11, 25) = 1\] نکته: طبیعی اعداد تسه همواره نسبت به هم اول هستند:

الف) دو عدد پدرهم: \(1 = (22, 21)\)

ب) دو عدد پدرهم: \(1 = (13, 12)\)

نکته: اعداد طبیعی زیر همواره نسبت به هم اول هستند:

الف) عدد اول با عدد یک: \(1 = (14, 1)\)

ب) عدد اول با عدد یک: \(1 = (22, 1)\)

ج) دو عدد اول مشترک: \(1 = (13, 5)\)

نکته: اگر عددی اول باشد تمام مضارب آن غیر از خودش مرکب هستند:

\[\{1, 2, 3, 6, 11, 22\} = 11\text{ مضارب طبیعی} \]

نکته: اگر عددی مرکب باشد تمام مضارب آن مرکب هستند:

\[\{1, 2, 3, 4, 6, 11, 12, 13, 22, 33, 66, 143\} = 11\text{ مضارب طبیعی} \]
تعیین عددهای اول (روش غربال): در این روش مراحل زیر را به ترتیب انجام می‌دهیم:

1) عدد یک را خط می‌زنیم. (چون عدد یک نه اول است و نه مرکب)
2) تمام مضارب عدد 2 (غیر از خودش) را خط می‌زنیم
3) تمام مضارب عدد 3 (غیر از خودش) را خط می‌زنیم
4) تمام مضارب عدد 5 (غیر از خودش) را خط می‌زنیم
5) تمام مضارب عدد 7 (غیر از خودش) را خط می‌زنیم
6) به همین ترتیب مضارب اعداد اول را با جایی خط می‌زنیم که مربع (تونو دوم) آن عدد اول از بزرگترین عدد داده شده بزرگ‌تر باشد.

مثال: روش غربال از 1 تا 33 آخرین عدد اولی که مضارب آن خط می‌خورد عدد 5 است. چون مربع عدد 7 عدد 49 می‌شود که از عدد 33 بزرگ‌تر است.

نکته: در خط زدن مضارب مرکب اعداد اول اولین مضرب آن خط می‌خورد عدد 5 است. چون مربع عدد 49 عدد 2۴ است.

نکته: اولین مضرب عدد 7 در روش غربال خط می‌خورد چند است؟

نکته: برای این که بدانیم در روش غربال عددی چند بار خط می‌خورد آن عدد را تجزیه کرده و اعداد اولی که آن عدد را به فرمول عدد تقسیم می‌کنند را نشان می‌دهد.

نکته: در روش غربال 1 تا 200 اعداد 27 و 235 و 42 چند بار خط می‌خورند؟

نکته: در روش غربال 1 تا 200 اعداد 27 و 235 و 42 چند بار خط می‌خورند؟

نکته: شناخت اعداد اول و مرکب: برای تشخیص اول بودن یا مرکب بودن یک عدد آن عدد را بر اعداد اول کوچک‌تر از جذر تقسیم می‌کنیم. اگر به هیچ کدام بخش پذیر نبود اول در غیر این صورت مرکب است.

مثال: آیا عدد 119 اول است؟ یا مرکب؟ ابتدا جذر تقسیم عدد 119 را می‌گیریم:

١١٩ √١١٩ ≈ ١٠/٩

پس عدد ١١٩ را بر اعداد اول کمتر از ١٠ (٢ و ٣ و ٥ و ٧ و ١١) تقسیم می‌کنیم. چون بر عدد ٢ بخش پذیر است، پس عدد ١١٩ مرکب است.

مثال: چند بار تقسیم می‌توان فهمید عدد ١٥١ اول است یا مرکب؟

پس باید بخش پذیر را بر اعداد اول کمتر از ١٢ (٢ و ٣ و ٥ و ٧ و ١١) برسی کنیم. چون بر هیچ یک بخش پذیر نپذیرد پس یا ١٥١ بار تقسیم می‌توان فهمید عدد ١٥١ اول است.
چند ضلعی: به هر خط شکسته به شرطی که اضلاع آن هم‌دیگر را قطع نكند چند ضلعی می‌گویند.

چند ضلعی منتظم: چند ضلعی که تمام اضلاع و تمام زاویه‌های آن یکدیگر هستند.

چند ضلعی محدب: چند ضلعی که تمام زاویه‌های آن از 183 درجه کمترند.

چند ضلعی مقعر: چند ضلعی که حداقل یکی از زاویه‌های آن از 180 درجه بیشترند.

مرکز تقارن: اگر دوران 180 درجه یک نقطه از شکل روي خود شکل قرار گيرد آن شکل مرکز تقارن دارد.

نکته: اگر در یک چند ضلعی دو نقطه دلخواه انتخاب کنیم و آن دو نقطه را با یک خط راست به هم وصل کنیم اگر قسمتی از خط بیرون از چند ضلعی قرار گرفت آن چندضلعی مقعر است. اگر تمام خط داخل چند ضلعی قرار گرفت چند ضلعی محدب است.

نکته: برای این که بدانیم شکلی مرکز تقارن دارد یا نه، نقطه‌ای در وسط شکل به عنوان مرکز تقارن در نظر گرفته سپس از شکل ناقضه به دلخواه انتخاب کرده به مرکز تقارن وصل و به همان اندازه ادامه می‌دهیم اگر نقطه حاصل روى شکل قرار گرفت آن شکل مرکز تقارن دارد. در غیر این صورت آن شکل مرکز تقارن ندارد.
مثال: کدام یک از چند ضلعی‌های زیر مرکز تقارن دارد?

نکته: در چند ضلعی منظم اگر تعداد اضلاع زوج باشد مرکز تقارن دارد و اگر فرد باشد مرکز تقارن ندارد.

به طور مثال: 8 ضلعی منظم مرکز تقارن دارد ولی 7 ضلعی منظم مرکز تقارن ندارد.

محور تقارن (خط تقارن): خطی است که اگر یک گراف را به دو قسمت مساوی تقسیم کنیم.

نکته: خط تقارن خطی است که چند ضلعی را به دو قسمت مساوی تقسیم کند.

مثال: هر یک از چند ضلعی‌های زیر محور تقارن دارد؟

نکته: چند ضلعی‌های منتظم به تعداد اضلاع محور تقارن دارند.

به طور مثال: 6 ضلعی منتظم 2 محور تقارن و مثلث متساوی الاضلاع (3 ضلعی منتظم) 3 محور تقارن دارد.

دو خطا موازی: دو خطی که هر چه چنین آنها امتداد دهیم همدمیگر را ایجاد کنند و فاصله بین دو خط تغییر نکند دو خط موازی می‌گویند.

علامت موازی بودن:

مانند:

دو خط متقاطع: دو خطی که موازی نباشند بین دو خطی که همدمیگر را در نقطه‌ای قطع کنند دو خط متقاطع می‌گویند.

علامت متقاطع بودن:

مانند:

دو خط عمود بر هم: دو خطی که همکنار از بین دو خطی که زاویه بین ای دو خط 90 درجه باشد.

علامت عمود بودن:

مانند:

نکته: اگر دو خط موازی را خانه قطع کنند (مربوط باشد) 8 زاویه حاصل می‌شود. 4 زاویه ند مساوی و 4 زاویه باز مساوی.

do زاویه تند

\(\hat{a} = 90\) درجه باشد.

\(\hat{a} + \hat{b} = 180\) درجه

www.riazisara.ir
درسنامه و نکات کلیدی
مربوط به:
مصط芸کاری
مثال:
در هر شکل مقدار x به دست آورید:
زاویه تند با زاویه مکمل است:
$120 = 2x$
$180 = 2x + 110$
$2x = 70$
$x = 35$

انواع چهار ضلعی ها:
1. متوازی الاضلاع
2. مستطیل
3. مربع
4. لوزی
5. ذوزنقه

متوازی الاضلاع:
چهار ضلعی است که اضلاع روبه رو موازی و مساویند.

خواص متوازی الاضلاع:
1. اضلاع روبه رو موازی و مساویند
2. زاویه های روبه رو مساویند
3. قطرهای متوازی الاضلاع همدیگر را نصف می‌کنند

مستطیل:
متوازی الاضلاعی است که زاویه قائم داشته باشد.

خواص مستطیل:
1. تمام خواص متوازی الاضلاع را دارد
2. دو قطر مستطیل برابرند

مربع:
متوازی الاضلاعی است که چهار ضلع آن برابر و زاویه قائم داشته باشد.

خواص مربع:
1. تمام خواص متوازی الاضلاع را دارد
2. دو قطر مربع برابرند
3. قطرهای مربع عمود منصف یکدیگرند

لوزی:
متوازی الاضلاعی است که چهار ضلع آن برابر است.

خواص لوزی:
1. تمام خواص متوازی الاضلاع را دارد
2. قطرهای لوزی عمود منصف یکدیگرند

ذوزنقه:
چهار ضلعی است که فقط دو ضلع موازی دارد.

انواع ذوزنقه:
1. ذوزنقه متساوی الساقین
2. ذوقنه قائم الزاویه

خواص ذوزنقه متساوی الساقین:
1. دو ساق آن برابرند
2. دو زاویه مجاور قاعده برابرند
3. دو زاویه مجاور ساق مکمل اند

خواص ذوقنه قائم الزاویه:
1. دارای زاویه قائمه است

www.riazisara.ir
مثال: در هر شکل مقادیر مجهول را به دست آورید؟

در متوازی الاضلاع زاویه‌های مجاور مکمل اند: \(b + 10 = 180 \Rightarrow b = 70 \)

نکته: مجموع زاویه‌های داخلی مثلث ۱۸۰ درجه است.

نکته: مجموع زاویه‌های داخلی جنگد ضلیعی از رابطه ی \(180 \times \left(\frac{n-2}{n} \right) \) حاصل می‌شود.

نکته: اندازه ی یک زاویه ی چند ضلعی مکمل از رابطه ی \(\frac{360}{n} \) حاصل می‌شود.

مثال: مجموع زاویه‌های داخلی ۱۵ ضلعی منتظم را به دست آورید؟

به طور مثال:

به درجه مثال: \(\hat{C_1} + \hat{C_2} = 180 \Rightarrow \hat{C_1} = \hat{A} + \hat{B} \)

نکته: مجموع زاویه‌های داخلی چند ضلعی ۳۶۰ درجه است.

نکته: اندازه ی یک زاویه چند ضلعی منتظم از رابطه ی \(\frac{360}{n} \) حاصل می‌شود.

نکته: اندازه ی یک زاویه داخلی و خارجی ۱۲ ضلعی منتظم را به دست آورید؟ (اندازه زاویه داخلی و خارجی مکمل اند)

نکته: جنگد ضلیعی منتظمی برای کاشی‌کاری مناسب است که عدد ۳۶۰ بر اندازه ی یک زاویه داخلی آن چند ضلیعی بخش داری باشد.

نکته: کدام یک از چند ضلیعی های زیر برای کاشی‌کاری مناسب است؟

الف) ۸ ضلیعی منتظم مناسب است \(\frac{360}{8} = 45 \) این عدد بر ۸ جنگد ضلیعی بخش پذیر نیست.

نکته: برای به دست آوردن تعداد قطرهای چند ضلیعی از رابطه ی \(\frac{n(n-1)}{2} \) استفاده می‌کنیم.

نکته: ۷ ضلیعی دارای چند قطر است؟
یک جمله ای جبری: عبارت جبری که از دو قسمت عدد (ضریب) و متغیر تشکیل شده باشد.

\[
\frac{a}{x} \quad y
\]

مانند:

چند جمله ای جبری: اگر بین عبارت های جبری علامت جمع و تفریق باشد تشکیل چند جمله ای می‌دهد.

\[
\begin{align*}
x + 2y & \quad (دارای دو جمله) \\
(\text{دارای سه جمله}) & \quad a - b + 7
\end{align*}
\]

عبارت جبری متشابه: عبارتی که متغیر های آن (حروف انگلیسی) و توان متغیرها کاملاً مثل هم باشند.

\[
(3a^2b^3, -3x^2y^3)
\]

مانند:

عبارت جبری نا متشابه: عبارتی که متغیرهای آن

\[
(2bc, ab, 3x^2y, 5xy^2)
\]

مانند:

ساده کردن عبارت های جبری: جملات متشابه را جدا کرده سپس مانند جمع و تفریق اعداد صحیح آن ها را جواب داده می‌باشد.

مثال:

عبارت های جبری زیر را ساده کنید.

\[
\begin{align*}
4x + 2y + 10x & = 6x + 2y \\
\quad a^4b - 4ab + 5ab + 2a^4b - 4ab & = 3a^4b - 3ab
\end{align*}
\]

ضرب در جمله ای: در ضرب دو جمله ای ضرب ها در هم و متغیرها در هم ضرب می‌شوند.

\[
\begin{align*}
5x(2x) & = 10x^2 \\
\quad \frac{abc}{c} & = abc
\end{align*}
\]

ضرب یک جمله ای در تمام جملات چند جمله ای: یک جمله ای در تمام جملات چند جمله ای ضرب می‌شود.

\[
\begin{align*}
-6a(3a + b) & = -18a^2 - 6ab
\end{align*}
\]

ضرب دو چند جمله ای در چند جمله ای: جملات پراتنژ اول در تمام جملات پراتنژ دوم ضرب می‌شود. سپس عبارت را ساده می‌کنیم.

\[
\begin{align*}
(2x - y)(x + 2y) & = 2x^2 + 3xy - xy - 3y^2 = 2x^2 + 3xy - 3y^2
\end{align*}
\]

نکته: اگر یک چند جمله ای داخل پراتنژ و به توان ۲ باشد آن عبارت را به صورت ضرب دو پراتنژ می‌نویسیم.

\[
\begin{align*}
(a + b)^2 & = (a + b)(a + b) = a^2 + 2ab + b^2
\end{align*}
\]
درسنامه و نکات کلیدی

مسعود زیرکاری

ناحیه یک زاهدان

نکته:
با توجه به مساوی بودن مساحت در دو شکل می‌توان برای یک شکل تساوی جبری نوشت.

مثال:
با توجه به شکل یک تساوی جبری بنویسید.

نکته:
یک عدد دو رقمی را به صورت \overline{ab} و یک عدد سه رقمی را به صورت \overline{abc} نشان می‌دهیم

نکته:
مقلوب عدد \overline{ab} را به صورت \overline{ba} نشان می‌دهیم. مثلا مقلوب عدد 37 برابر با 73 می‌شود.

نکته:
مجموع هر عدد دو رقمی با مقلوب آن همواره مضرب 11 می‌باشد

$$\overline{ab} + \overline{ba} = 10a + b + 10b + a = 11a + 11b = 11(a + b)$$

نکته:
اختلاف هر عدد دو رقمی با مقلوب آن همواره مضرب 9 می‌باشد

$$\overline{ab} - \overline{ba} = 10a + b - 10b - a = 9a - 9b = 9(a - b)$$

مقدار عددی عبارت جبری: به جای متغیرها اعداد داده شده را قرار می‌دهیم سپس با توجه به ترتیب انجام عملیات (اولویت) عبارت را جواب می‌دهیم.

مثال:
مقدار عددی عبارت های جبری زیر را به ازای مقادیر داده شده با دست آورید.

الف) $5x - 2xy + v$ ($x = 1$, $y = -2$) ($v = 5$) ($\overline{5 + 2 - 7 = 0}$)

ب) $a^2 + b^7 - 4ab$ ($a = -2$, $y = 3$) ($\overline{4 - 4 - 12 = 0}$)

نجز عبارت جبری: تبدیل به ضرب یا فاکتورگیری مراحل زیر را به ترتیب انجام می‌دهیم:

1- ابتدا (ب.م.م) ضرایب را به دست می‌آوریم.
2- حروف مشترک با توان کمتر را کنار (ب.م.م) ضرایب می‌نویسیم.
3- تمام جملات عبارت را بر جمله ی مشترک تقسیم کرده و داخل پرانتز می‌نویسیم.

مثال: عبارت های زیر را به ضرب تبدیل کنید.

$$10ab + 15a = 5a(2b + 3)$$

$$x^\prime y + xy^\prime = \frac{xy(x + y)}{x^\prime y + x y^\prime} = \frac{1}{xy}$$

www.riazisara.ir
درسنامه و نکات کلیدی

صرح شبیه، درسنامه و نکات کلیدی

معادله: معادله یک تساوی جبری است که به ازای یک تساوی درست تبدیل می شود.

نکته: برای حل معادله مراحل زیر را به ترتیب انجام می دهیم:

1) مجهول ها را به طرف چپ و عددهای معلوم را به طرف راست انتقال می دهیم (عددی که انتقال داده شود علامت آن عوض می شود)
2) عددهای مجهول با هم و عددهای معلوم را با هم جواب می دهیم
3) حاصل عددهای معلوم را بر حاصل عددهای مجهول تقسیم می کنیم.

مثال: معادله های زیر را جواب دهید.

\[2x + 3 = -7 \Rightarrow x = -5 \]
\[-6 + x = 2x + 5 \Rightarrow x = -11 \]
\[4(x - 2r) = 2x \]

ناحیه یک زاهدان

مسعود زیرکاری

معادله های ضرب کرده تا تبدیل به معادله معمولی شود.

\[3 + 5 \times \frac{1}{2} = 12 \Rightarrow \left(1 + \frac{1}{2}\right) \times 12 \Rightarrow \frac{1}{2} \times 12 = 1 \Rightarrow x = -\frac{1}{2} \]

نکته: در معادلات کسری دو طرف معادله را در (ک.م.م) مخرج ها ضرب کرده تا تبدیل به معادله معمولی شود.

\[\text{ک.م.م} = 12 = \{2, 3\} \]

نکته: سه عدد متواوی را به صورت \((x + 1, x + 2, x + 3)\) نمایش می دهیم.

مثال: مجموع سه عدد زوج متواوی 60 شده است. عدد بزرگتر چند است؟

\[x + (x + 2) + (x + 4) = 60 \Rightarrow 3x + 6 = 60 \Rightarrow 3x = 54 \Rightarrow x = 18 \Rightarrow \{18, 20, 22\} \]

مثال: به پنج برابر عددی هشت واحد اضافه کرده ایم حاصل از قارچی دو پیازچین دو برابر آن عدد شش واحد کمتر از آن عدد چند است؟

\[5x + 8 = -2x - 6 \Rightarrow 7x = -14 \Rightarrow x = -2 \]

www.riazisara.ir
(فصل پنجم)
درس نامه و نکات کلیه
مستندگرایی
بردار و مختصات

بردار: خط راست جهت داری است. برای نمایاندن بردار از دو حرف بردار از دو حرف پاکتگی انگلیسی یا یک حرف کوچک انگلیسی استفاده می‌شود.

مختصات بردار: برای به دست آوردن مختصات یک بردار از ابتدا طول (جهت افقی) سپس عرض (جهت عمودی) را به دست می‌آوریم.

مثال: مختصات بردارهای زیر را بیان بسیاری.

\[\vec{a} = \begin{bmatrix} 3 \\ \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 4 \\ \end{bmatrix} \quad \vec{c} = \begin{bmatrix} -3 \\ \end{bmatrix} \]

دو بردار مساوی (هم سنگ): دو بردار در صورتی مساوی که هم جهت و هم اندازه و موازی باشند.

\[\vec{a} = \vec{b} \]

مانند:

دو بردار قرینه: دو بردار در صورتی قرینه هستند که هم اندازه و موازی ولی خلاف جهت هم باشند.

\[\vec{a} \parallel \vec{b} \]

مانند:

\[\vec{a} + \vec{b} = \vec{0} \]

نکته: حاصل جمع هر بردار با قرینه اش برابر از بردار صفر است.

جمع بردارها (برآیند بردارها): برای جمع دو بردار از دو روش استفاده می‌شود:

1) روش مثلثی: اگر دو بردار پشت سر هم باشند از این روش استفاده می‌شود.

\[\vec{a} + \vec{b} = \vec{c} \]

مانند:

2) روش متوازی الاضلاع: اگر دو بردار پشت سر هم نباشند از این روش استفاده می‌شود.

\[\vec{a} + \vec{b} = \vec{c} \]

مانند:

مثال: حاصل جمع بردارهای زیر را رسم کنید.

بردارهای مساوی یا هر بردار طولی رسم می‌کنیم که بردارها پشت سرهم باشند.

\[\vec{a} + \vec{b} + \vec{c} = \vec{d} \]

\[\vec{e} + \vec{f} + \vec{h} = \vec{k} \]

www.riazisara.ir

دانلود از سایت ریاضی سرا
درسنامه و نکات کلیدی
بردار و مختصات

مثال: برای شکل زیر یک جمع برداری و یک جمع مختصات بنویسید.

نکته: در حل معادلات مختصاتی عدد های معلوم یا مجهول از یک طرف تساوی به طرف دیگر منتقل شود علماً آن ها قرینه می شوند.

www.riazisara.ir
درسنامه و نکات کلیدی
بردار و مختصات

مسعود زیرکاری
ن地狱 یک زاهدان

مثال:
معادلات مختصاتی زیر را حل کنید.

\[5\chi = -\frac{5}{2} \Rightarrow \chi = -\frac{5}{2} \div \frac{5}{2} = \begin{bmatrix} \chi \end{bmatrix} \]
\[2x = \begin{bmatrix} 2 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 2 \end{bmatrix} \div \begin{bmatrix} 2 \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} \]
\[x = \begin{bmatrix} \chi \end{bmatrix} \div \begin{bmatrix} \chi \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \]

نکته:
برای تبدیل یک بردار به بردار واحد مختصات کافی است عدد طول مختصات را \(\vec{i} \) ضریب و عدد عرض مختصات را \(\vec{j} \) قرار دهیم.

مثال:
مختصات بردار \(\vec{a} = 2\vec{i} - 4\vec{j} \) را نوشته سپس بردار \(\vec{a} \) را در دستگاه مختصات رسم کنید.

\[\vec{a} = 2\vec{i} - 4\vec{j} \]

نکته:
بردارهای زیر با حسب \(\vec{a} = 2\vec{i} - 4\vec{j} \) و \(\vec{b} = \vec{i} + 2\vec{j} \) بردارهای واحد مختصات می‌گویند.

مثال:
اگر \(\vec{a} = 3\vec{i} - 2\vec{j} \) و \(\vec{b} = \vec{i} + 2\vec{j} \) باشند، مختصات بردار \(\vec{c} = \vec{a} - 3\vec{b} \) را بنویسید.

\[\vec{c} = \begin{bmatrix} -2 \end{bmatrix} \]

نکته:
بردارهای واحد مختصات زیر را حلق کنید.

\[\vec{a} = 3\vec{i} - 2\vec{j} \]
\[\vec{b} = \vec{i} + 2\vec{j} \]
\[\vec{c} = \vec{a} - 3\vec{b} = \begin{bmatrix} -2 \end{bmatrix} \]

نکته:
برای حل معادلات مختصاتی زیر را حل کنید.

\[\vec{x} + 3\vec{j} = \vec{a} - \vec{b} = \begin{bmatrix} 1 \end{bmatrix} \]
\[\vec{x} + 3\vec{j} = \begin{bmatrix} 1 \end{bmatrix} \]

دانلود از سایت ریاضی سرا
www.riazisara.ir
مثلث قائم الزاویه: مثلثی است که دو ضلع آن بر هم عمود باشند. ضلع روبرو به زاویه 90 درجه وتر نام دارد.

نکته: وتر مثلث قائم الزاویه بزرگترین ضلع مثلث است.

رابطه فیثاغورس: این رابطه فقط در مثلث قائم الزاویه قابل نوشته شدن است.

کلامی: $\sqrt{\text{ضلع دیگر}} + \sqrt{\text{یک ضلع}} = \sqrt{\text{وتر}}$

بزرگترین ضلع وتر مثلث قائم الزاویه

رابطه فیثاغورس: $b^2 = a^2 + c^2$

نکته: ثابت است که در مثلث مجزور یک ضلع با مجموع مجزوری از دو ضلع دیگر برابر باشد. آن مثلث قائم الزاویه است. (عکس رابطه فیثاغورس)

مثال: در هر شکل مقدار x را به دست آورید.

$$x = \sqrt{111}$$

$$x = 11$$

مثال: کدام یک از مثلث های زیر قائم الزاویه است؟ چرا؟

$$x = \sqrt{144} = 12$$

$$x = 12$$

اعداد فیثاغورسی: اعدادی هستند که مربع ضلع بزرگتر با مجموع مربعات دو ضلع دیگر باشد.

نکته: بعضی از اعداد فیثاغورسی بکاربرد عبارتند از:

$$1, 2, 3, 5, 10, 17, 26, 37, 50, 65$$

روش پایه خطا به طول a:

این دو عدد مشخص کرد که مجموع مرتبات آن دو عدد زیر رادیکال شود. سپس مثلث قائم الزاویه با این اصلاح رسم کرده وتر مثلث به انداره ی همان عدد خواسته شده است.

www.riazisara.ir
مثال: پاره خطی به طول $\sqrt{11}$.

شکل های همنهشت: اگر دو شکل را با یک یا چند تبدیل (انتقال و تقارن و دوران) بر یکدیگر منطبق کنیم، به طوری که کاملا یکدیگر بی‌پوشانند آن دو شکل همنهشت هستند.

نکته: در دو شکل همنهشت اجزای مناظر دو مثلث (ضلع ها و زاویه ها) برابرند.

مثال: دو مثلث زیر همنهشت هستند. نوع تبدیل و مقدار x و y و z را به دست آوریم.

- $\triangle ABC$ با $\triangle MNP$ هم‌نهشت هستند.
- $\triangle ADE$ با $\triangle BCG$ هم‌نهشت هستند.
- $\triangle ABD$ با $\triangle CDE$ هم‌نهشت هستند.

- $\triangle ABC = \triangle MNP$\quad $\triangle ADE = \triangle BCG$\quad $\triangle ABD = \triangle CDE$
درسنامه و نکات کلیدی

نکته: هر نقطه روی نیمساز زاویه از دو ضلع زاویه به یک فاصله است.

\[\hat{O}_1 = \hat{O}_2 \text{ (نیمساز } OM) \]
\[\hat{A} = \hat{B} = 90^\circ \text{ (دز) } \]
\[OM = OM = \text{ ضلع مشترک } \]

\[\Rightarrow \triangle OAM \cong \triangle OBM \Rightarrow MA = MB \]

نکته: هر نقطه روی عمود منصف یک پاره خط از دو سر پاره خط به یک اندازه است.

\[AH = HB \text{ (عمود منصف } OH) \]
\[\hat{H}_1 = \hat{H}_2 = 90^\circ \text{ (زض) } \]
\[OH = OH = \text{ ضلع مشترک } \]

\[\Rightarrow \triangle AHO \cong \triangle BHO \Rightarrow OA = OB \]

مثال: در شکل زیر دو مثلث مشترک هستند. دلیل هم نهشته دو مثلث مثلثی متساوی الساقین و ABC و A MB و AM C.

\[AB = AC \]
\[MB = MC \]
\[AM = AM \]

\[\Rightarrow \triangle AMB \cong \triangle AMC \]

(ضضض)

مثال: نشان دهد طول دو مماس رسم شده از نقطه خارج دایره با هم برابر هستند.

\[OA = OB \text{ (شعاع دایره) } \]
\[\hat{A} = \hat{B} = 90^\circ \text{ (دز) } \]
\[OM = OM = \text{ ضلع مشترک } \]

\[\Rightarrow \triangle MAO \cong \triangle MBO \Rightarrow MA = MB \]

(اضضاض)

www.riazisara.ir
ضرب اعداد توان دار:
الف) اگر پایه‌ها برابر باشند: یکی از پایه‌ها را نوشته و توان‌ها را با هم جمع می‌کنیم.

\[a^m \times a^n = a^{m+n} \]

مانند:

\[4^3 \times 4^5 = 4^{3+5} = 4^8 \]

ب) اگر پایه‌ها باشند: یکی از پایه‌ها را نوشته و توان‌ها را در هم ضرب می‌کنیم.

\[a^m \times b^m = (ab)^m \]

مانند:

\[12^7 \times 3^7 = 3^7 \times 4^7 \]

تقسیم اعداد توان دار:
الف) اگر پایه‌ها برابر باشند: یکی از پایه‌ها را نوشته و توان‌ها را از هم کم می‌کنیم.

\[a^m \div a^n = a^{m-n} \]

مانند:

\[9^5 \div 3^5 = 9^{5-5} = 9^0 = 1 \]

ب) اگر پایه‌ها باشند: یکی از توان‌ها را نوشته و پایه‌ها را بر هم تقسیم می‌کنیم.

\[a^m \div b^m = (\frac{a}{b})^m \]

مانند:

\[10^8 \div 4^8 = 5^8 \]

نکته: اگر در ضرب و تقسیم اعداد توان دار باشد و توان‌ها هم باشند از تجزیه استفاده می‌کنیم.

\[(a^m)^n = a^{mn} \]

مانند:

\[2^3 \times 2^3 = (2^3)^1 \times 2^3 = 2^{3+3} = 2^6 \]

تجزیه

\[9^5 \div 3^5 = 3^2 \times 3 \]

مانند:

\[9^5 \div 3^5 = 3^2 \times 3 \]

نکته: عدد منفی داخل پرانتز باشند علامت منفی به تعداد توان ضرب می‌شود. اگر عدد منفی داخل پرانتز باشد مثبت می‌شود.

\[(−4)^2 \times (−4)^3 = −4 \times (−4)^3 = −(4 \times 4) \]

نکته: عدد منفی به توان زوج بر سر حاصل عددی مثبت و اگر به توان فرد بر سر حاصل عددی منفی می‌شود.

\[(3^2)^3 = (3^2)^3 = 3^{2 \times 3} = 3^6 \]

نکته: اگر عدد توان دار داخل پرانتز باشد و توان دیگر داشته باشد یا چنین توان‌های دیگر داشته باشد یا توان‌های دیگر داشته باشد عبارت بالا را جواب می‌دهد.

\[(−3)^2 = 9 \]

نکته: اگر عدد توان دار بدون پرانتز باشد و توان دیگر داشته باشد پایه را نوشته و عبارت بالا را جواب می‌دهد.

\[3^2 = 9 \]

نکته: اگر عدد توان دار بدون پرانتز باشد و توان دیگر داشته باشد پایه را نوشته و عبارت بالا را جواب می‌دهد.

www.riazisara.ir
مثال: حاصل هر عبارت را به صورت عدد توان دار بنویسید.

\[3^{\frac{3}{2}} \times 3^{\frac{2}{3}} = 3^{\frac{3}{2} + \frac{2}{3}} = 3^{\frac{6 + 4}{6}} = 3^{\frac{10}{6}} = 3^{\frac{5}{3}} \]

\[3^{\frac{2}{3}} \div 3^{\frac{3}{3}} = 3^{\frac{2}{3} - 1} = 3^{-\frac{1}{3}} \]

مثال: اگر \(3^a = 9 \) باشد حاصل هر عبارت را به دست آورید.

\[3^a = (3^{\frac{1}{2}})^4 = (3^{\frac{1}{2}})^2 = 3 \]

\[9^a = (3^{2})^4 = 3^8 \]

نکته: برای مقایسه اعداد توان با یکدیگر باید پایه عدد مشترکی گرزند.

مثال: اعداد زیر را از کوچک به بزرگ مرتب کنید.

جذر یا ریشه دوم اعداد:

\[\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{8}, \sqrt{9} \]

\[(\sqrt{2})^2 \Rightarrow 2, (\sqrt{3})^2 \Rightarrow 3, (\sqrt{4})^2 \Rightarrow 4, (\sqrt{5})^2 \Rightarrow 5, (\sqrt{6})^2 \Rightarrow 6, (\sqrt{8})^2 \Rightarrow 8 \]

\[(\sqrt{9})^2 \Rightarrow 9 \]

عدد 9 دو مجزور اعداد 3 و 3 می‌گویند. و اعداد 3 و 3.

جذر یا ریشه دوم اعداد: در تساوی \(\phi = \sqrt{2} \), \(\psi = -\sqrt{2} \), \(\theta = \sqrt{3} \), \(\tau = -\sqrt{3} \)

- ریشه های دوم 9 می‌گویند.

نکته: هر عدد دارای دو ریشه دوم است که یکی مثبت دیگری است.

مفهوم: ریشه های دوم عدد 36 برابر است با: 6 و -6.

نکته: در جذر گیری فقط عدد مثبت آن در نظر گرفته می‌شود و جذر را به رادیکال \(\sqrt{7} \) نشان می‌دهد.

نکته: اعداد منفی جذر ندارند. پون مجزور هیچ عددی؛ منفی نیم‌شود.

نکته: جذر اعداد صفر و یک برابر با خود آن اعداد است.

مثال: جذر اعداد زیر را به دست آورید.

\[\sqrt{16} = 2 \]

\[\sqrt{9} = 3 \]

\[\sqrt{25} = 5 \]

\[\sqrt{\frac{49}{25}} = \frac{7 \times 5}{10} = \frac{7}{2} \]

www.riazisara.ir
(فصل هفتم)
درس هشتم
نام و جنگ
ophagehsean

مسجدتکی

جذر تقریبی اعداد: برای بدست آوردن جذر تقریبی اعداد مراحل زیر را به ترتیب انجام می‌دهیم:

1) ابتدا مشخص می‌کنیم عدد داده شده بین کدام عدد صحیح دو عدد صحیح متوالی قرار دارد.

2) سپس عدد وسط دو عدد را مشخص کرده و مجذور آن را می‌نویسیم.

3) سپس اگر مجذور عدد وسطی از عدد داده شده بیشتر بود ۴ عدد کمتر از عدد وسطی و اگر از عدد داده شده کمتر بود ۴ عدد بزرگتر از عدد وسطی را می‌نویسیم.

۴) داخل یک جدول مجذورهای ۴ عدد را نوشته سپس مجذور عددی که به عدد داده شده نزدیکتر بود همان جذر تقریبی عدد است.

نکته: برای این که بدانیم عدد داده شده بین کدام دو عدد صحیح متوالی قرار دارد عدد داده شده بین کدام عدد صحیح متوالی قرار دارد می‌توانیم به کمک جدول مجذورهای عدد داده شده به طور مشابه به کمک جدول تقریبی عدد داده شده بین کدام دو عدد صحیح متوالی قرار دارد مشخص کنیم.

مثال: عدد √۳۵ به دست آورده با استفاده از جدول مجذورهای عدد √۳۵ به دست آمده است.

<table>
<thead>
<tr>
<th>عدد</th>
<th>۶/۲</th>
<th>۶/۳</th>
<th>۶/۴</th>
<th>۶/۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>مجذور عدد</td>
<td>۱۳۲/۲۵</td>
<td>۱۳۲/۲۴</td>
<td>۱۳۲/۲۳</td>
<td>۱۳۲/۲۲</td>
</tr>
</tbody>
</table>

چون مجذور عدد وسط کمتر از عدد داده مجذور ۴ عدد کوچک‌تر از عدد وسط را می‌نویسیم.

√۳۵ ≈ ۶/۸

نکته: برای این که بدانیم عدد داده شده بین کدام عدد صحیح متوالی قرار دارد عدد داده شده بین کدام عدد صحیح متوالی قرار دارد می‌توانیم به کمک جدول مجذورهای عدد داده شده به طور مشابه به کمک جدول تقریبی عدد داده شده بین کدام دو عدد صحیح متوالی قرار دارد مشخص کنیم.

مثال: عدد √۱۲۷ به دست آورده با استفاده از جدول مجذورهای عدد √۱۲۷ به دست آمده است.

<table>
<thead>
<tr>
<th>عدد</th>
<th>۱۱/۶</th>
<th>۱۱/۵</th>
<th>۱۱/۴</th>
<th>۱۱/۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>مجذور عدد</td>
<td>۱۲۷/۲۵</td>
<td>۱۲۷/۲۴</td>
<td>۱۲۷/۲۳</td>
<td>۱۲۷/۲۲</td>
</tr>
</tbody>
</table>

چون مجذور عدد وسط بیشتر از عدد داده مجذور ۴ عدد بزرگ‌تر از عدد وسط را می‌نویسیم.

√۱۲۷ ≈ ۱۱/۵
شتمسال ه
درس‌نامه و نکات کلیدی
محدودتک‌کاری

(فصل هفتم)
نامه‌یک زاهدان

تمامی اعداد رادیکالی روی محور اعداد: برای نمایش این اعداد به دستگاه چهار مورد زیر را باید مشخص کنیم:

1) مبدا حرکت
2) تعداد حرکت
3) جهت حرکت
4) تعداد مثلث

مثال: اعداد \(17\sqrt{17} - 5\) و \(1\) را روی محور اعداد نمایش دهید.

خواص ضرب و تقسیم رادیکال ها: در ضرب و تقسیم رادیکال ها می‌توان رادیکال را جدا از هم نوشت.

مثال: حاصل عبارت های زیر را به دست آورید.

\[
\sqrt{900} = \sqrt{9 \times 100} = \sqrt{9} \times \sqrt{100} = 30
\]

نکته: در جمع و تفریق رادیکال ها نمی‌توان رادیکال را جدا از هم نوشت و جواب داد:

\[
\sqrt{a} + b \neq \sqrt{a} + \sqrt{b} \quad \sqrt{a} - b \neq \sqrt{a} - \sqrt{b}
\]

نکته: برای ساده کردن عدد زیر رادیکال می‌توان برای بعضی از اعداد یک ضرب نوشت به شرطی که یکی از دو عدد جذر دقیق داشته باشد.

مثال: اعداد زیر را به صورت ضرب یک عدد طبیعی در رادیکال بنویسید.

\[
\sqrt{20} = 2 \sqrt{5} \quad 3 \sqrt{28} = 3 \sqrt{4 \times 7}
\]

www.riazisara.ir
ششمین

لامنه و نکات کلیدی

آمار و احتمال

علم آمار : جمع آوری اطلاعات (داداه) و بررسی آن را این آمار می گویند.

داده آماری : اطلاعات عددی را داده آماری می گویند.

انواع نمودار :

1) نمودار ستونی : برای مقایسه تعداد و مشخص کردن کمترین و بیشترین داده آماری استفاده می شود.

2) نمودار خط شکسته : برای نشان دادن تغییرات در یک مدت مشخص کاربرد دارد.

3) نمودار تصویری : برای مقایسه داده های تقریبی کاربرد دارد.

4) نمودار دایره ای : برای نشان دادن نسبت داده ها به کل و سهم هر بخش کاربرد دارد.

دامنه تغییرات : اختلاف بیشترین و کمترین داده آماری را دامنه تغییرات می گویند.

مثال : دامنه تغییرات داده های زیر را مشخص کنید:

\[
X = \{8, 12, 17, 22, 27\}
\]

\[
\bar{X} = \frac{s}{n} = \frac{27 - (-0)}{5} = \frac{27}{5} = 5.4
\]

میانگین داده : از تقسیم مجموع داده ها بر تعداد داده ها میانگین حاصل می شود.

\[
\bar{X} = \frac{s}{n}
\]

مثال : میانگین داده های زیر را به دست آورید:

\[
X = \{4, 11, 13, -18, 8, 15\}
\]

\[
\bar{X} = \frac{s}{n} = \frac{4 + 11 + 13 - 18 + 8 + 15}{6} = \frac{4}{6} = \frac{2}{3}
\]

مثال : الف) میانگین 5 درس 17/5 شده است مجموع نرات چند است.

\[
\bar{X} = \frac{s}{n} \Rightarrow 17/5 = \frac{s}{\delta} \Rightarrow s = 17/5 \times \delta = 87/5
\]

ب) میانگین 12 و مجموع نمرات 168 شده است. تعداد درس چند است.

\[
\bar{X} = \frac{s}{n} \Rightarrow 14 = \frac{168}{n} \Rightarrow n = \frac{168}{14} = 12
\]

www.riazisara.ir
نکته: میانگین جدول فراوانی از رابطه ی زیر حاصل می شود:

\[
\text{میانگین} = \frac{\text{مجموع ستون (مرکز × فراوانی)}}{\text{مجموع ستون فراوانی}}
\]

جدول فراوانی: اگر تعداد داده های آماری زیاد باشد از جدول آماری استفاده می شود که شامل قسمت های زیر است:

1) حدود دسته: از کمترین داده تا بیشترین داده تقسیم بندی می شود.

2) فراوانی: به تعداد داده های هر دسته فراوانی می گویند.

3) خط نشان: به تعداد فراوانی هر دسته خط می کشیم.

4) مرکز (متوسط) دسته: دو عدد دسته جمع و حاصل را بر عدد ۲ تقسیم می کنیم.

5) مرکز × فراوانی: اعداد مرکز و فراوانی هر دسته را در هم ضرب می کنیم.

مثال: نمرات ریاضی تعدادی از دانش آموزان به صورت زیر است:

الف) جدول فراوانی داده شده را کامل کنید. و میانگین نمرات را با استفاده از جدول به دست آورید.

<table>
<thead>
<tr>
<th>حدود دسته</th>
<th>فراوانی</th>
<th>مرکز دسته</th>
<th>خط نشان</th>
<th>مرکز × فراوانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۴ < x ≤ ۱۶</td>
<td>۳</td>
<td>۱۵</td>
<td>//</td>
<td>۳ × ۱۵ = ۴۵</td>
</tr>
<tr>
<td>۱۶ < x ≤ ۱۸</td>
<td>۳</td>
<td>۱۷</td>
<td>//</td>
<td>۳ × ۱۷ = ۵۱</td>
</tr>
<tr>
<td>۱۸ < x ≤ ۲۰</td>
<td>۳</td>
<td>۱۹</td>
<td>//</td>
<td>۳ × ۱۹ = ۵۷</td>
</tr>
<tr>
<td>جمع</td>
<td>۱۶</td>
<td></td>
<td></td>
<td>۱۷۲</td>
</tr>
</tbody>
</table>

\[
\text{میانگین} = \frac{172}{16} = ۱۰.۷ ٪
\]

www.riazisara.ir
احتمال‌‌یا اندازه‌گیری شانس: احتمال رخ دادن یک اتفاق از رابطه‌ی زیر به دست می‌آید:

\[\text{احتمال} = \frac{\text{تعداد حالات مطلوب}}{\text{تعداد کل حالات}} \]

نکته: احتمال که رخ دادن یک اتفاق غیر ممکن باشد با عدد صفر نشان می‌دهد.

نکته: احتمال ممکن را با عدد کسری بین صفر تا یک نشان می‌دهند.

نکته: احتمال حتمی را با عدد یک نشان می‌دهند.

مثال: در پرتاب یک تاس احتمال‌های زیر را به دست آورید.
الف) احتمال آمدن عدد زوج مضرب 3:
ب) احتمال آمدن اعداد کوچکتر از 4:
ج) احتمال آمدن اعداد اول:

مثال: در یک کیسه 4 مهره قرمز، 2 مهره زرد و 3 مهره سفید است. یک مهره را تصادفی بیرون می‌آوریم:
الف) احتمال بیرون آمدن مهره قرمز:
ب) احتمال بیرون نیایدن مهره سفید:

www.riazisara.ir
شتمسال ه درسنامه و نکات کلیدی مسئولیتکاری

نکته: مجموع احتمال ها در یک مسئله همواره عدد یک است. 1 = احتمال رخ ندادن + احتمال رخ دادن

مثال: احتمال آمدن رنگ سبز در یک چرخنه 3 است. احتمال نیامدن رنگ سبز چند است.

\[
\frac{7}{10} = \text{احتمال رخ ندادن} \Rightarrow \text{احتمال رخ دادن} = 1 - \text{احتمال رخ ندادن}
\]

حالت های ممکن در یک پیشامده: برای به دست آوردن کل حالت ها می توان از جدول نظام دار یا نمودار درختی استفاده کرد.

مثال: یک سکه و یک تاس را به هم پرتاب می کنیم. تمام حالت های ممکن را به روش جدول نظام دار و نمودار درختی به دست آورید.

(جدول نظام دار)

<table>
<thead>
<tr>
<th>تاس</th>
<th>سکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>رو</td>
<td>1</td>
</tr>
<tr>
<td>پشت</td>
<td>2</td>
</tr>
<tr>
<td>رو</td>
<td>3</td>
</tr>
<tr>
<td>پشت</td>
<td>4</td>
</tr>
<tr>
<td>رو</td>
<td>5</td>
</tr>
<tr>
<td>پشت</td>
<td>6</td>
</tr>
</tbody>
</table>

(نمودار درختی)

نرمال‌سازی www.riazisara.ir
دایره: به مجموعه نقاطی که از یک نقطه مشخص (مرکز دایره)، به یک اندازه باشند.

شعاع: عددی مثبت، که ابعاد دایره را با بزرگی و طول می‌آورد.

نقطه: دایره را با بزرگی در برگیرد.

تعداد اجزای دایره:
1- شعاع دایره: فاصله‌ای از مرکز دایره تا محیط دایره را شعاع یا را نشان می‌دهد.
2- کمان دایره: فاصله‌ای از مرکز دایره تا محیط دایره را کمان و با حرف (ک) نشان می‌دهد.
3- وتر دایره: مجموعه نقطه‌هایی روی محیط دایره را به هم وصل می‌کند و با حرف (و) نشان می‌دهد.
4- قطر دایره: قطر را می‌گذرد، مرکز دایره را به هم وصل می‌کند و از مرکز دایره می‌گذرد. قطر را با حرف (ق) نشان می‌دهد.

وضعیت خط و دایره: خط و دایره دارای سه وضعیت هستند:
1) خط مشکی است. در این حالت خط و دایره نقطه مشترک (مرکز دایره) ندارند.
2) خط ممکن است دایره باشد. در این حالت خط و دایره نقطه مشترک (مرکز دایره) دارند.
3) خط ممکن است داخل دایره باشد. در این حالت خط و دایره دو نقطه مشترک (مرکز دایره) دارند.

www.riazisara.ir
(فصل نهم)
در سامانه و نکات کلیدی
درس 14
مغزدرکاری

3) خط ممکن است مماس (چسبیده) بر دایره باشد. در این حالت خط و دایره یک مشترک (برخورد) دارند.

(رابطه ی مقایسه شعاع با فاصله مرکز تا خط)

نکته: شعاع دایره در نقطه ی تماس بر خط مماس عمود است.

مثال: این شعاع دایره 3 سانتی متر و فاصله ی مرکز تا خط 5 سانتی متر است. خط و دایره چند نقطه ی مشترک دارند.

چون فاصله ی مرکز تا خط از شعاع دایره بیشتر است پس خط برون دایره قرار دارد و نقطه مشترکی ندارند.

ب) قطر دایره 6 سانتی متر و فاصله ی مرکز تا خط 3 سانتی متر است. خط و دایره چند نقطه ی مشترک دارند.

قطر دو برای شعاع دایره است پس شعاع دایره با برای 3 سانتی متر است. چون شعاع با فاصله ی مرکز تا خط برای است پس خط و دایره یک نقطه ی مشترک دارند.

مثال: با توجه به شکل زاویه ی خواسته شده چند درجه است.

شعاع دایره در نقطه تماس بر خط مماس عمود یعنی زاویه ی 90 درجه تشكل می دهد.

مجموع زاویه های داخلی هر مثلث 180 درجه است.

$\sum = 2\pi$

$\sum = 43^\circ$

مثال: با توجه به شکل مقدار α را به دست آورید.

(در مثلث قائم الزاویه برای اندازه ی ضلع مجهول از رابطه ی فیثاغورس استفاده می شود)

$\alpha^2 = 15^2 - 12^2$

$\alpha^2 = 225 - 144 = 81$

$\alpha = \sqrt{81} = 9$

پیدا کردن مرکز دایره: ابتدا دو و تر غیر موازی رسم می کنیم. سپس عمودمنصف های آن دو و تر را رسم کرده که محل برخورد آن دو عمودمنصف مرکز دایره تام دارد.

www.riazisara.ir
دانلود از سایت رایگان سرا
درسانه و نکات کلیدی

مسیری که در یک دایره دلخواه مرکز دایره را با رسم دو وتر نشان دهید.

ابتدا دو وتر غیر موازی CD و AB را رسم می‌کنیم.

سپس عمود منصف آن دو را به نقطه چین مشخص شده رسم می‌کنیم که محل برخورد دو عمود منصف همان مرکز دایره است.

نکته: خصوصی که از مرکز بر وتر عمود باشد آن را به دو قسمت مساوی تقسیم می‌کند. و بر عکس خصوصی که از وسط وتر و مرکز دایره بگذرد. بر وتر عموم این می‌باشد.

زاویه مرکزی: زاویه ای است که رأس آن مرکز دایره و دو ضلع آن شعاع‌ها باشد.

اندازه‌ی زاویه مرکزی: زاویه‌ی مرکزی برای انتساب آن از روشی است که رأس آن روی مرکز دایره باشد.

نکته: محیط دایره بر حسب درجه 360 درجه است و بر حسب سانتی‌متر $2\pi r$ یا $3\pi /14$ قطر می‌باشد.

نتیجه: اگر دو وتر منصف دایره باشد و وترهای نظیر آن دو کمان نیز برابرند و بر عکس.

تقسیم دایره به کمان‌های مساوی: ابتدا یک شعاع دایره رسم می‌کنیم سپس محیط دایره $2\pi r$ را بر تعداد کمان‌های خواسته شده تقسیم کرده، نقاله را منطبق بر شعاع گذاشته و زاویه‌ی مورد نظر را مشخص می‌کنیم و در آخر دهانه ی پرگار را به اندازه‌ی وتر اجاق شده باز کرده روى یکی از نقاط اجاق شده روی محیط دایره گذاشته و متوالیاً کمان می‌زنیم.

نکته: یک دایره رسم کنید و آن را به 5 کمان مساوی تقسیم کنید.

مثال: محاسبه طول یک کمان از دایره: برای محاسبه طول کمان از رابطه ی زیر استفاده می‌کنیم:

$$
\text{طول کمان} = \frac{\text{زاویه کمان}}{360} \times \text{محیط دایره}
$$

www.riazisara.ir
(فصل نهم)
درس‌نامه و نکات کلیدی
مستندیکاری
مثال: در هر شکل طول کمان یک جنب سانتی‌متر است.

\[AB \]

زاویه محاطی: زاویه‌ای است که رأس آن روی مکانی می‌گردد و دو ضلع آن واقع در دایره باشد.

اندازه‌ی زاویه محاطی: زاویه محاطی با نصف اندام‌های کمکی روبرو، روبرو و آن.

نکته: زاویه‌های محاطی روبرو به یک کمان برابرند.

نکته: اندام‌های زاویه محاطی روبرو به قطر دایره ۹۰ درجه است.

مثال: اندام‌های کمان و زاویه‌های خواسته شده را بیان نمایید.

زاویه محاطی برابر کمان روبرو و

\[\hat{A} = \frac{80}{2} = 40^\circ \]

زاویه مرکزی برابر کمان روبرو و

\[\angle BOC = 80^\circ \]

\[\angle BAC = \angle BAC \]

\[= 180^\circ - 80^\circ = 100^\circ \]

زاویه محاطی روی قطر

\[\hat{A} = 90^\circ \]

\[\hat{B} = 10^\circ \]

\[\hat{C} = 20^\circ \]

\[\hat{D} = 80^\circ \]

\[\angle BDC = 220^\circ \]

\[\angle BAC = 360^\circ - 220^\circ = 140^\circ \]

\[\angle BAC = 140^\circ \]

\[\angle BAC = 80^\circ \]

\[\angle BAC = 100^\circ \]

\[\hat{C} = 40^\circ \]

\[\hat{D} = 100^\circ \]

\[\hat{E} = 100^\circ \]

\[\angle BAC = 80^\circ \]

\[\hat{O} = 140^\circ \]

www.riazisara.ir