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PREFACE 

The golden ratio and Fibonacci numbers have numerous applications which range 
from the description of plant growth and the crystallographic structure of certain solids 
to the development of computer algorithms for searching data bases. Although much 
has been written about these numbers, the present book will h0-y IYI the gap 
between those sources which take a philosophical or even mystical approach and the 
formal mathematical texts. I have tried to stress not only fundamental properties of 
these numbers but their application to diverse fields of mathematics, computer science, 
physics and biology. I believe that this is the k t  book to take this approach since the 
application of models involving the golden ratio to the description of incommensurate 
structures and quasicrystals in the 1970’s and 1980’s. 

This book will, hopefully, be of intern to the general reader with an interest in 
mathematics and its application to the physical and biological sciences. It may also be 
mitable supplementary reading for an introductory university come in number theory, 
geometty or general mathematics. Finally, the present volume should be suf€iciently 
infomathe to provide a general introduction to the golden ratio and Fibonacci numbers 
for those researchers and graduate students who are working in fields where these 
numbers have found applications. Formal mathematics has been kept to a minimum, 
although readers should have a general knowledge of algebra, geometry and 
trigonometry at the high school or first year university level. 

My own intern in the golden ratio and related topics developed from my 
involvement in research on the physical properties of incommensurate solids and 
quasiaystals. Over the years I have benefited greatly from discussions with colleagues 
in this field and many of the ideas presented in this book have been derived fiom these 
discussions. Without their involvement in my research in solid state physics, this book 
would not have been written. For their comments and ideas which eventually led to the 
p m n t  volume I would like to acknowledge Derek Lawther, Srinivas Veeturi, Dhiren 
Bahadur, Mike McHenry, Bob O’Handley and Bob March. I would also like to thank 
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vi The Golden Ratio and Fibonacci Numbers 

Ewa Dunlap, Rene Codombe, Jerry MacKay and Jody O’Brien for their advice and 
assistance during the preparation of the manuscript. 

Halifii, Nova Scoria 
June 1997 

RA. I)uNLAp 
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CHAPTER 1 

~TRODUCTXON 

The golden ratio is an i ~ t i o ~  number defined to be (1+&}/2. It has been 
of interest to mathematicians, physicists, philosophers, architects, artists and even 
m~~~ since a n t i q ~ ~ .  It has been called the golden mean, the golden section, 
the golden cut, the divine proportion, the Fibonacci number and the mean of 
Fhidias and has a value of 1.61803 ... and is usually designated by the Greek 
c m r  z which is derived from the Greek word for cut. Althou~h it is 
sometimes denoted 4, from the first letter of the name of the mathematician 
Phidias who studied its properties, it is more commonly referred to as r while 4 is 
used to denote Ilzor -1fz. The first known book devoted to the golden ratio is De 
Djvino Proportione by Luca Pacioli [1445-15191. This book, published in 1509, 
was illustrated by Leonard0 da Vinci. 

An irrational number is one which cannot be expressed as a ratio of finite 
integer& These numbers form an infinite set and some, such as R (the ratio of the 
c i ~ ~ ~ n ~  to the diameter of a circle) and e (the base of natwal ~ o g ~ ~ s ~ ,  
are well known and have obvious applications in many fields. It is interesting to 
consider why the golden ratio has also attracted co~~derable a~ention and what its 
possible applications might be. 

Certain irrational numbers can be expressed in the form 

a+& 
I=------ (1.1) 

where z is defined for the values a = I, b 2= 5 and c = 2. Other i ~ t i o ~  ~~~~ 

such as a = 3, b = 3, c = 3 would seem to have a more pleasing symmetry than the 
golden ratio and a similar vdlue; 1.57735 ... . However, the golden ratio possesses 
a number of interesting and important properties which rnake it unique among the 
set of irrational numbers. Much has been written about the golden ratio and its 
a p p l i ~ ~ o ~  in Werent fields (e.g. ~ r a n ~ ~ I e r  1992, I. Hargittai 1992, Huntley 

C 
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2 The Golden Ratio andFibonacci Numbers 

1990). While much of this work is scientifically valid and is based on the Unique 
properties of z as an irrational number, a s igdcant  portion of what has been 
written on 7 is considerably more speculative. It is the intent of this book to 
provide scientifically valid information. However, a brief discussion of some of the 
more speculative claims concerning the golden ratio follows and this provides an 
interesting in~oduction to the remainder of this book. 

Golden rectangles 

The unique properties of the golden ratio were first considered in the context 
of dividing a line into two segments. If the line is divided so that the ratio of the 
total length to the length of the longer segment is the same as the ratio of the 
length of the longer segment to the length of the shorter segment then this ratio is 
the golden ratio. The so-called golden rectangle may be constructed from these 
line segments such that the length to width ratio (the aspect ratio, a) is z. The 
ancient Creeks believed that a rectangle constructed in such a manner was the 
most ~ ~ t h e t i c ~ l y  pleasing of all rectangles and they i n c o ~ o r a t ~  this shape into 
many of their architectural designs. 

Figure 1.1 shows a number of rectangles with different aspect ratios. 
Although studies have shown that rectangles with a around 1.5 are more attractive 
to many people than those which are either more square (a near 1) or more 
elongated (large a), it is not obvious that the figure with u = z is more aes~etically 
pleasing than those with a of & , 3f2 or A. It is, therefore, not clear that the 
particular properties of z as an irrational number are of any fundamental 
importance to its role in the pleasing shape of the golden rectangle. 

Art 

The aesthetic appeal of the golden ratio in art has been the subject of a number 
of studies (e.g. Runion 1972). While it is true that many paintings include 
rectangular components which have aspect ratios near the golden ratio there is 
rarely any evidence that the artist considered the golden ratio in any conscious way 
in the composition of the painting. Rather it is likely that rectangular elements 
with aspect ratios near r (or perhaps near f i ,  3f2 or 6) provided pleasing 
proportions. In some cases artists have incorporated elements in their paintings 
which exhibit fivefold symmetry (see e.g. Dunlap 1992). As will be demonstrated 
in later chapters, there is a close relationship between the golden ratio and fivefold 
symmetry. In such cases the importance of the golden ratio in art is, perhaps, 
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Fig. 1.1. Some rectangles with different aspect ratios, a (shown by the numbers inside the rectangles). 

more definitive but certainly less direct. 

The $reat pyramid 

"he relationship of the golden ratio to the design of the great pyramid of 
Cheops has also been the subject of some speculation (see Verheyen 1992). The 
great pyramid has a base edge length of about 230 m, a height of about 147 nt 
go thou^ about 9.5 m of this has weathered away) and an apex angle of 
a p p ~ ~ ~ t e l y  a = 63.43' (see Fig. 1.2). This apex angle is very close to the apex 
angle of the golden rhombus (63.435') which has dimensions derived from the 
golden ratio and which is discussed in detail in Chapter 12. It has been suggested 
that the designers of the great pyramid were conscious of the relationship of the 
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4 The Golden Ratio and Fibonacci Numbers 

Fig. 1.2. Schematic representation of the great pyramid showing the height, h, the base dimension, d, where 
the circumference c = 4d and the apex angle, a. 

golden ratio and the pyramid's dimensions. A much older hypothesis has 
suggested that the dimensions of the great pyramid are related to the constant 7c. 

Specifically it has been speculated that the ratio of the circumference of the base of 
the pyramid, c = 4 4  to its height, h, is 2z. It can be shown that this ratio is related 
to the apex angle of a pyramid by the expression 

A value of c/h = 27c corresponds to an angle of a = 63.405'. The difference 
between this angle and the apex angle of the golden rhombus results in a difference 
of about 22 cm in the edge length of the pyramid base. Since the base edges on the 
north and south sides of the great pyramid differ by 20 cm it would seem to be 
f l c u l t  to determine from the dmensions of the pyramid itself whether z or n (if 
either) was a factor in its design; some insight into the philosophy of the pyramid 
designers would help to resolve this question. It may be that the similarity of 
certain aspects of the pyramid's geometry to either of these constants is purely 
coincidental. In fact some ratio of dimensions of virtually every object is likely to 
be close to some numerical constant of interest. Gillings (1972) has commented on 
the relevance of the golden ratio to the dimensions of the great pyramid as follows: 
" ... the dimensions of the Eiffel Tower or Boulder Dam could be made to produce 

www.riazisara.irاز سايت رياضي سرادانلود



Introduction 5 

equally pretentious expressions of a mathematical connotation.” 

Pi 

The relationship of the golden ratio to pi has generated some highly 
The constant a is defined to be the ratio of the speculative hypotheses. 

c i rc~erence ,  c, to the diameter, d, of a circle; 
c 

s = - .  
d (1.3) 

The constant a has been studied in great detail by mathematicians and is one of the 
i ~ t i o ~  numbers which has been calculated to the largest number of digits. It 
has been suggested (perhaps less than seriously) that cld is not a but is a quantity 
related to the golden ratio. Two possible relationships (at least) have been 
suggestd, 

and 

These expressions yield values of 3.141641 .*. and 3.144606 ..., respectively. 
These are close to the accepted value of a, 3.14259265 ... but are sufticiently 
different to preclude any serious ~ n § i d e ~ t i o n  of these h ~ t h e s e s .  

Some of what has been said above about the golden ratio has some concrete 
evidence to support it; much more of it is highly speculative and some of it 
absolutely ludicrous. The ~ ~ i b i l i ~  of the occurrence of r in the dimensions of 
m t t - d e  objects (i.e. in art and architecture, for example), even when convincing 
evidence exists, is primarily of interest from an ~ c h ~ l o ~ ~ ,  social or 
psychological point of view and does little to provide information concerning the 
interesting properties of 7 itself. This book, therefore, deals primarily with the 
r n a ~ e ~ t i ~  properties of z as a unique irrational number and, to a large extent, 
its relationship to the series of so-called Fibonacci numbers. It is shown that the 
golden ratio plays a prominent role in the dimensions of all objects which exhibit 
5v&old  me^. It is also shown that among the irrational numbers, the golden 
ratio is the most irrational and, as a resuft, has unique applications in number 
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6 The Golden Ratio and Fibonacci Numbers 

theory, search algorithms, the minimization of functions, network theory, the 
atomic structure of certain materials and the growth of b i o l o ~ c ~  organisms. The 
topics discussed in this book all deal with the unique properties of the golden ratio 
and the Fibonacci numbers and the appIications of these mathematical concepts to 
topics which range from the methods of efficiently alphabetizing a list of names to 
the pattern of seeds in a sunflower. 
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CHAPTER 2 

BASIC P R O P E R ~ S  OF TEE GOLDEN RATIO 

The golden ratio appears in some very ~ n ~ e n ~  relations~ps involving 
numbers from which many of its properties can be derived. One of the most basic 
ocmnces  of the golden ratio, and one of the most i n ~ ~ ~ n g ,  involves the 
properties of numerical sequences. A numerical sequence is an ordered set of 
numbers which is generated by a well defined algorithm. One of the simplest 
methods of p r ~ u c i n g  a n ~ e r i ~  sequence is by the use of one or more seed 
values and an appropriate recursion relation. 

One of the best known numerical sequences is the additive sequence. This is 
generated by the recursion relation 

A"+2 = A,+t + A n  . (2.1) 

That is, each term is equal to the sum of the two previous terms. This sequence 
requires two &values, A0 and&. The simple case ofAo = 0 andAl = 1 may be 
consided as an example. This gives the sequence 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... . (2.2) 

This sequence can be extended indefinitely by applying the recursion relation. It 
may also be extended to negative values of the index, n, by applying a recursion 
relation based on Eq. (2.1) to the values given in Eq. (2.2) yielding a sequence 
which extends indefinitely in both directions; 

... 34, -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, ... . (2.3) 

In this particular case the values of the terms with negative indices are numerically 
the same as the corresponding terms with positive indices but they alternate in 

7 
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8 The Golden Ratio and Fibonacci Numbers 

sign. This is an interesting property of this particular additive sequence which will 
be discussed further in Chapter 5, although it is not a property of additive 
sequences in general. 

Another simple numerical sequence, referred to as the geometric sequence, is 
generated by the recursion relation 

An+\  = d n  . (2 * 4) 

That is, each term is the previous term multiplied by some constant factor. This 
sequence may be generated on the basis of one seed value and the value of the 
constant factor. A simple example uses AO = 1 and a = 2. This gives the familiar 
sequence of powers of 2; 

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... . (2.5) 

Again it is straightforward to extend this sequence to negative values of the 
indices; 

1 1 1 1 1  
- 1, 2, 4, ... - - - -  

’“ 32’ 16’ 8 ’  4 ’  2 ’  

A comparison of Eqs. (2.3) and (2.6) would seem to illustrate the fundamental 
differences between additive and geometric sequences. However, these differences 
are the result of the particular choice of the multiplicative constant in Eq. (2.4). 
DifFerent choices for this quantity can yield very Merent results. Consider, for 
example, the possibility that a sequence could be both additive and geometric; that 
is, the terms would satisfy both Eq. (2.1) and Eq. (2.4). These two equations can 
be combined to give the constraining relations for a. From Eq. (2.4) we can write 

An+2 = a&+, = a 2  A, . 

Eqs. (2.1) and (2.7) yield the relation 

(2.7) 

a 2 A n  = d , + A ,  (2.8) 

a 2 - a - l = 0 .  (2.9) 

or simply 

This equation is known as the Fibonacci quadratic equation and is easily solved to 
yield the two roots 
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Basic Properties of the Golden Ratio 9 

- 7  a, =-- l+& 
2 

and 

(2.10) 

(2.11) 

It is straightforward to construct a geometric sequence using the value of al as the 
constant factor and a seed value of (say) A0 = 1. This gives 

(2.12) 2 3 4 5  1, 7 ,  7 , 7  , 7  ,7  , ... . 

Extending this to negative indices yields 

(2.13) -3 -2 2 3  ... 7 , 7  ,7-l, 1, 2, 7 ,7  , ... . 

Using the seed values of AO = 1 and A I  = 7 from Eq. (2.12) a corresponding 
additive sequence may be constructed using the recursion relation of Eq. (2.1). For 
negative and positive indices this sequence is 

Numerically the terms in this sequence are the same as those in the geometric 
sequence in Eq. (2.13). These terms may be equated to yield some interesting 
relationships between powers of 7 and linear expressions in 7. Some of these are 

7 = 7  

(2.15) 

In general, powers of the golden ratio may be expressed as 
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10 The Golden Ratio and Fibonacci Numbers 

Table 2.1. Some coefficients and exponents in the relationship given by Eq. (2.16). 

n an an-1 

-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 

-2 1 
13 
-8 
5 
-3 
2 
-1 
1 
0 
1 
1 
2 
3 
5 
8 
13 
21 

34 
-2 1 
13 
-8 
5 
-3 
2 
-1 
1 
0 
1 
1 
2 
3 
5 
8 
13 

a,z+an-, = r n  (2.16) 

where the coefficients, an, as given in Table 2.1 are the An of the additive sequence 
in Eq. (2.3). This relationship is discussed further in Chapter 5 .  

Another sequence which is both additive and geometric can be derived using 
the other root of the quadratic equation as given by Eqs. (2.11) and (2.15), 
az = -z-' = 1 - z. This gives the sequence 

... - 7 3 , z 2 ,--z , 1, --z -1 , z -2 ,-z -3 . . . (2.17) 

and the corresponding sequence based on the additive recursion relation is found to 
be 

1 2 3 
, ,... . (2.18) 

2 1 1 1 ... -3-- 2+- -I-- 1 -- I - -  I-- 2- -  
z '  z '  7' ' z z z -z 
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Basic Properties ofthe Golden Ratio 11 

Quating terms from Eqs. (2.17) and (2.18) allows for the derivation of relations of 
the form 

(2.19) 

where the coefficients are again the terms in the additive sequence of Eq. (2.3). It 
can be shown that these expressions are algebraically equivalent to those of Eq. 
(2.16) by multiplying both sides of Eq. (2.19) by z. 

The above discussion concerning numerical sequences illustrates the 
relationship of the golden ratio to some fundamental properties of numbers. 
Additional insight into the properties of the golden ratio may be gained by taking a 
somewhat more geometric approach. In fact, it is this occurrence of the golden 
ratio which is responsible for its appeal to the ancient philosophers and for the 
derivation of its name; the golden ratio. Consider a line A C  which is divided by a 
point B as illustrated in Fig. 2.1 in such a way that the ratio of the lengths of the 
two segments is the same as the ratio of the length of the longer segment to the 
entire line. If the length AB is arbitrarily set equal to 1 and the length of the total 
line is called x then the segment BC = x-1 and the ratios of lengths may be 
expressed as 

(2.20) 

or 

x2-x-1=o . (2.21) 

This is the Fibonacci equation which has the roots given in terms of the golden 
ratio by Eqs. (2.10) and (2.11); z and -1/z. Obviously it is the positive root which 
has some physical sigdicance in the context of this problem. Alternately the total 
length of the line may be set to 1 and segment AB may be arbitrarily called x. The 
ratios are then 

(2.22) 

- - 0 

A B C 

Fig. 2.1. Sectioning of the line. 
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or 

The Golden Ratio nnd Fibonacci Numbers 

(2.23) 

This quadratic equation has roots which may be expressed in terms of the 

2 x + x - 1 = 0 .  

- 
golden ratio as 

J s - 1  1 
x '=2-1  - 

and 
- 

(2.24) 

(2.25) 

Again only the positive root has physical significance and shows the ratio of lengths 
to be related to the golden ratio. 

Some interesting mathematical relationships involving the golden ratio can be 
derived by combining powers of r. For example, a simple inspection of 
relationships such as those shown in Eq. (2.15) and Table 2.1, will allow for the 
derivation of expressions involving both positive and negative powers of the golden 
ratio. The simplest of these is 

7, + ( - l ) " P  = L,  (2.26) 

where L, is an integer that takes on values L,=l, 3 , 4 , 7 ,  1 1 ,  18,. . . for n=l, 2, 3 ,4 ,  5, 
6,. , . . These are the so-called Lucas numbers and are disussed further in Chapter 6. 
This expression is somewhat remarkable as it shows that the sum of two irrational 
numbers can be equal to a rational number. 

Another interesting relationship involving the golden ratio may be obtained 
directly from the Fibonacci quadratic equation, Eq. (2.9). This may be written for 7 
as 

r = J l + z ,  (2.27) 

Substituting the left hand side for r in the square root on the right hand side gives 

r = J r n .  

This procedure may be continued indefinitely to yield 

(2.28) 

(2.29) 
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Basic Properties of the Golden Ratio 13 

Along similar lines it is known that the positive root of Eq. (2.23) is l/z. This 
expression may be rearranged and the substitution for the term in the square root 
performed indefinitely to give 

q-. z (2.30) 

The expression in Eq. (2.30) provides one means of calculating the golden ratio 
to a high degree of accuracy using a computer. It is, however, less time consuming 
to calculate zdirectly on the basis of Eq. (2.10) by first calculating the square root 
of 5 .  An irrational square root can b e c alculated t o an  arbitrary a ccuracy u sing a 
simple iterative technique. To calculate a square root to an accuracy of N digits 
requires a number of basic arithmetic operations which is proportional to N2. An 
early report of the use of a computer to calculate the golden ratio to high accuracy 
provided 7 to 4599 decimal places; see Berg (1966). This required about 20 
minutes on an IBM 1401 main frame computer. Today this calculation can be done 
on an IBM Pentium personal computer in about 2 seconds. It is straightforward to 
determine the validity of the calculated values. One method is to substitute the 
calculated value of z into the Fibonacci equation (Eq. (2.9)) and perform the 
operations to the required number of decimal places and show that the identity 
holds. An equivalent method is to calculate the reciprocal of rand show that 
l /z= z-  1 holds to the required accuracy. 
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CHAPTER 3 

GEOMETRIC PROBLEMS IN TWO DIMENSIONS 

The golden ratio plays an important role in the dimensions of many geometric 
figures, in both two and three dimensions. The simplest appearance of z in 
geometry occurs in two dimensional figures, and it is here that the close affinity of 
the golden ratio with fivefold symmetry is first apparent. Among the most 
aesthetically appealing two dimensional shapes are the regular polygons. These 
are figures which have all edges equal and all interior angles equal and less than 
180" (see e.g. Dunlap 1997). The simplest of these is the equilateral triangle, with 
three edges. In general a regular n-gon has n edges and interior angles which are 
given by the relation 

2 
a =[1--].1800 n . (3.1) 

It is the regular pentagon, with n = 5, which exhibits fivefold symmetry in two 
dimensions, and Eq. (3.1) gives the interior angle of a = 108". This is illustrated 
in Fig. 3. la. If the edge lengths of the pentagon are 1 then it can be shown that the 
diagonal as illustrated in Fig. 3. lb has a length z. The pentagon may be divided 
into three isosceles triangles as shown in Fig. 3.lc by two diagonals with one 
vertex in common. Two of the triangles are obtuse with edge lengths 1 : z : 1 and 
one is acute with edge lengths z : 1 : 7. These are usually referred to as the golden 
gnomons and the golden triangle, respectively. The angle relationships as shown 
in the figure can be expressed as 

p +2y =a  

6 + y = a  

(3.2) 

1s 
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16 The Golden Rat10 and Fibonacci Numbers 

These equations may be combined with Eq. (3.1) to obtain values of the angles 
j3 = y= 36" and 6= 72'. Figure 3.1 ~ l l u s ~ t e s  that the ability to cons t~c t  two line 
segments with length ratios of 1 : z provides a simple means of constmcting a 
regular pentagon. Ancient mathematicians and p ~ l o s o ~ h e r s  showed interest in 

1 1 

Fig. 3.1. (a) The regular pentagon with a11 edge length of 1, (b) the regular pentagon showing the diagonal of 
length rand (c) the regular pentagon dissected into two golden triangles and a golden gnomon. 

this problem because of the relevance of the pentagon in various aspects of art, 
a r c ~ ~ c ~  and religion. A s t r a i g h ~ o ~ a r d  method of cons~c t ing  a line 
segment of length z is shown in Fig, 3.2. This c o n s t ~ c t i o ~  can be extended to 
produce a regular pentagon and the details of this construction are described in 
Appendix 1. 

Figure 3.3 shows a unique property of the golden gnomon and the golden 
triangle. Each may be dissected into two smaller triangles, one of which is a 
golden gnomon and the other is a golden triangle. This cha~cteristic is the direct 
result of the fact that the golden ratio satisfies the relationship 

1 
- -=?-1 * (3.3) 
7 

This dissection p r ~ ~ ~ e  w ~ c h  may be referred to as i ~ a t i o ~  (as it increases the 
number of triangles) can be continued indefinitely, dividing resulting gnomons and 
triangles into smaller and smaller gnomons and triangles. An analogous 
procedure, which may be referred to as de~a t~on ,  comb in^ a triangle and a 
gnomon into a larger triangle or gnomon. These concepts will be discussed W e r  
in later chapters with reference to Fibonacci sequences and q u ~ i c ~ s ~ s .  It can be 
readily seen from an inspection of Fig. 3.3 that the inflation of one golden gnomon 

www.riazisara.irاز سايت رياضي سرادانلود



Geometric Problems tn %a Dimensions 17 

to a smaller golden gnomon represents a reduction in the linear dimensions of the 
gnomon by a factor of 7 and a reduction in the area of the gnomon by a factor of2. 
This same relationship holds for the inflation of the golden triangle as well. 

The angles involved in the regular pentagon and in the goIden gnomon and 
triangle are all m~tiples of 360°/10 = 36'. Since the linear ~ m e ~ s ~ o n s  of the 
t r i a n ~ ~  involving these angles are related to the golden ratio, it is appar~n~ that 
the ~ g o ~ m e ~ c  functions of angles related to 36' should also be related to the 
golden ratio, Table 3.1 gives t r i~onome~c ~ c t i o n s  for some of these angles. 

Another two   me^^^^ figure w ~ c ~  is closely related to the gol~en ratio is 
the golden rectangle as shown in Fig. 3.4. This rectangle has edge lengths which 
are in the ratio z. The aesthetic appeal of the golden rectangle has been the subject 
of considerable discussion as has its role in art and Hellenic architecture. It has a 
number of interesting mathematical properties, and some of these will be discussed 
here and in the next chapter. The golden rectangle may be divided into a square 
and a smaller golden rectangle as shown in Fig. 3.4. This inflation reduces the 
linear dimension of the golden rectangle by a factor of z and the area by a factor of 
rz .  It is, therefore, a process w ~ c h  is analogous to the p r ~ e d ~ ~  for golden 
triangles and is a process which can be repeated indef i~~ly .  Figure 3.5 shows 
several i ~ a t i o ~  of the golden r ~ ~ g l ~ .  The relations~p of powers of z as given 
by Eq. (2.15) can be seen from the geome~c analysis of Fig. 3.5 as the pro~essive 

D C 

A E B F 

Fig. 3.2. Comtmotion of a h e  segment with length r. A square ABCD is 6xmstructed. The midpoint of the 
baee of the square fjwint E )  is located and a compass is used to draw an arc through pint  C with 
its centsr at point E. This arc intercepts the extension of the baseline of the square at point F. 
The ratio oflengths @to AB is the golden ratio. A simple geometric calculation will show this 
to be true. 
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18 The Golden Ratio andFibonacci Numbers 

Fig. 3.3. (a) The golden gnomon and @) the golden triangle. The dissection into smaller golden [ ~ O ~ O M  

and triangles is illustrated. 

Table 3.1. Trigonometric fundions related to the golden ratio. 

3 6 O  

5 4 O  

no 

2 
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1 

7 

1 

f P  

Fig. 3.4. 'The golden rectangle dissected into a square and a smaller golden rectangle. 

inflations by a factor of 2 yield golden rectangles with longest edge lengths which 
follow the sequence 

2, 1, 7-1, -Z+2, 22-3, - 3 T f 5 ,  ... (3.4) 

which is the sequence of&. (2.14) with decreasing indices. 
Figure 3.5 also shows another i n ~ r e ~ n g  property; The diagonal of the 

original rectangle is perpendicular to the diagonal of the smaller rectangle. These 
diagonals are also the diagonals of alternating golden rectangles in the inflation 
process. This means that the inflation of the golden rectangles will converge at the 
point given by the intersection of the diagonafs. ~ o ~ e c t i n g  vertices of this 
progre8sion of golden rectangles with suitably curved lines as illustrated in Fig. 
3.6, will yield a spiral which converges at the intersection of the two diagonals, 
This same spiral can be ~ ~ ~ c t ~  by connecting the acute vertices of the golden 
triangles in a progression of inflated triangles as shown in Fig. 3.7. This 
particular spiral is referred to as the equiangular or logarithmic spiral and is given 
by the polar equation 

r =yOe'c0ta . (3.5) 
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Fig. 3.5. Inflation ofthe golden rectangle showing the perpendicular diagonals. 

Fig. 3.6. Construction ofthe equiangular or logarithmic spiral fiom a sequence of golden rectangles. 

Here the radius of the spiral, r, as measured from the pole, or point of intersection 
of the two diagonals, is expressed as a function of the angle 8. The quantity ro is a 
constant related to the overall dimensions of the spiral and the quantity a is a 
constant for a given spiral and is a measure of how tightly the spiral is wound. In 
the limiting case a = 90" and cot a = 0. Equation (3.5) then reduces to r = ro 
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which is the polar equation of a circle with radius ro. The ~ o g ~ ~ c  spiral plays 
an important role in the growth and structure of certain biological systems and will 
be discussed fiather in Chapter 13. 

The discussion in this chapter has shown that certain two dimensional figures 
can be inflated indefinitely according to algorithms which have their basis in the 
m a ~ e ~ t i ~  properties of the golden ratio. Similarly an inverse process known 
as deflation of the ~ o g ~ ~ c  spiral and two and three dimensional tilings as will 
be discussed in later chapters. As well, it has been seen that the golden ratio 
appears in the dimensions of figures which exhibit fivefold symmetry. This feature 
is even more prevalent in three dimensional geometry and is discussed further in 
the next chapter. 

Fig. 3.7. Comtmction of the equianguiar or logarithmic spirai &om a sequence of golden triangles. 
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CHAPTER 4 

GEOMETRIC PROBLEMS IN THREE DIMENSIONS 

In two dimensions the number of regular n-gons with interior angles defined 
by Eq. (3.1) is infinite. In three dimensions the regular polyhedra may be defined 
in an analogous way; All faces are the same regular polygon and each vertex is 
convex (as viewed from outside the figure). There are precisely five such figures 
and these are known as the Platonic solids. It is, perhaps, curious that only five 
such solids exist but a simple proof of this fact may be given in the following 
manner. Each face of the regular polyhedron is a regular polygon with n edges. 
From the discussion in the previous chapter it is known that values of n which are 
permitted are the integers 

3<n<oo (4.1) 

with the interior angles, a, related to n by Eq. (3.1). Each vertex of the three 
dimensional polygon is defined by the intersection of a number of faces, m. In 
order to form a vertex the integer m is constrained by 

m 2 3  (4.2) 

(If m = 2 then an edge, not a vertex, is formed). In order for a convex vertex to be 
formed it is also necessary that 

ma < 360" . (4.3) 

If m a  = 360" then the vertex is merely a point on a plane and if ma > 360" then 
the faces overlap. The conditions as described in Eq. (3.1) and Eqs. (4.1) through 
(4.3) allow for the determination of the values of n and m for permissible regular 
polyhedra. There are only five combinations of integer values of n and m which 
satisfy these equations and these combinations are listed in Table 4.1. These 
correspond to the five Platonic solids as shown in Fig. 4.1. A relationship, known 
as Euler's formula, exists between the values of e, f and v, the number of edges, 

23 
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Table 4.1. Characteristics of  the five Platonic solids. The quantities n and m are the number of  edges per face 
and the number offaces per vertex, respectively. The quantities e,fand v are the total number of 
edges, faces and vertices for the solid. 

solid n m e f V 

tetrahedron 3 3 6 4 4 
cube (hexahedron) 4 3 12 6 8 
octahedron 3 4 12 8 6 
dodecahedron 5 3 30 12 20 
icosahedron 3 5 30 20 12 

faces and vertices of the polyhedron, respectively, in the table; 

f + v = e + 2  . (4.4) 

This equation applies to all convex polyhedra, not only the Platonic solids. A large 
number of convex polyhedra which are not regular exist. One common example of 
these is the traditional design of a soccer ball which consists of 12 pentagonal and 
20 hexagonal faces. 

As the previous chapter indicated, the golden ratio is of relevance to the 
geometry of figures with fivefold symmetry and it is the dodecahedron and the 
icosahedron which are of particular interest to the present discussion. If these two 
Platonic solids are constructed with an edge length of one unit, then the total 
surface areas and volumes of the solids are given in Table 4.2. It is obvious from 
these quantities that the golden ratio plays an important role in the dimensions of 
these solids. 

The importance of the golden ratio is also apparent in the relationship of the 
icosahedron to the golden rectangle. Three golden rectangles may be arranged so 
that they are mutually perpendicular and their centers are coincident. The twelve 
vertices (four vertices for each of the three rectangles) lie at the vertices of an 
icosahedron as illustrated in Fig. 4.2. If the golden rectangles have dimensions 1 
by z then the resulting icosahedron has an edge length of 1. 

Certain relationships are apparent between the values of n, m, e, f and v for 
some of the Platonic solids. Specifically, the cube and the octahedron, as well as 
the dodecahedron and the icosahedron, have the same values of e, while values of 
n and m, as well asfand v are interchanged. Solids which are related by the same 
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Table 4.2. Surface areas and volumes of the dodecahedron and the icosahedron with edge lengths of 1. 

solid surface volume 

dodecahedron 157 

$G 
57 

6 -  27 

icosahedron * 57 

6 

Fig. 4.2. Construction of an icosahedron fiom three mutually perpendicular golden rectangles. 

values of e are sometimes referred to as duals. The tetrahedron is unique as it is 
not paired with any of the other solids. It is, therefore, said to be self-dual. These 
equalities between certain geometric factors of the Platonic solids result from 
similarities in their symmetry and allow for the mapping of one solid into another. 
This is, perhaps, easiest to visualize for the cube and the tetrahedron. The cube 
has six faces while the ~ ~ h ~ o n  has six vertices. If a vertex is constructed at the 
center of each face of the cube and these vertices are connected together by edges, 
an octahedron is formed as shown in Fig. 4.3. Similarly, the octahedron has eight 
faces and the cube has eight vertices. Constructing a vertex at the center of each 
face of the octahedron will produce a cube. Repeating this process produces 
smailer and smaller cubes and octahedra which are rescaled by a constant factor. 
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Another method of mapping a cube into an octahedron is related to the fact that 
both solids have 12 edges. If perpendicular bisectors of each of the twelve edges of 
the cube are constructed these will form the edges of an octahedron as seen in Fig. 
4.4. The reverse procedure of constructing perpendicular bisectors of the edges of 
an octahedron to form a cube is also valid. The rescaling of the edge length of the 
solid by each of these mapping procedures, face-to-vertex and edge-toedge, are 
given in Table 4.3. Perhaps not surprisingly, the factor & appears in 
relationships between the cube and the octahedron. 

The Same procedures can be used to map a dodecahedron into an icosahedron 
and vice versa as both solids have 30 edges and the dodecahedron has 12 faces and 
20 edges while these values are interchanged for the icosahedron. An example of 
the edge-to-edge mapping between a dodecahedron and an icosahedron is 
illustrated in Fig. 4.5. Values of the edge length ratio obtained during this 
mapping procedure are given in Table 4.3. It is seen that the golden ratio appears 
frequently in these relationships. Applying either of these two mapping methods to 
the tetrahedron will produce another tetrahedron with dimensions as given in the 
table. 

Pig. 4.3. Vertex-to-face relationship between the cube and the octahemwt. 
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Fig. 4.4. Edge-to-edge relationship between the cube and the octahedron 

Curiously the value of f = 12 for the dodecahedron and v = 12 for the 
icosahedron is the same as the value of e for both the cube and the octahedron. It 
might be hypothesized that placing a vertex at the center of each edge of (say) an 
octahedron would yield an icosahedron. This hypothesis, however, is incorrect. If, 
on the other hand, each edge of an o c ~ e ~ r o n  is d i ~ d ~  into two segments with 
relative lengths in the ratio of 1 : r then these points do form the vertices of an 
icosahedron. Some care is required in locating these vertices. Four edges form 
each vertex of the octahedron. W o  opposite edges are divided so that the longer 
edge segment is adjacent to the vertex while the other two opposite edges are 
divided so that the shorter edge segment is adjacent to the vertex. Each vertex may 
be treated in thts manner. 

In the case of two dimensional figures it is possible to relax some of the 
angular relationships which were applied to obtain the regular n-gons while 
keeping all edge lengths equal. Requiring that all interior angles be less than 180' 
but not requiring them to be equal will produce figures such as a variety of 
rhombuses (see Fig. 4.6a). Some of these are of pa~cu la r  relevance to the golden 
ratio and will be discussed further in Chapters 11 and 12. Allowing some interior 
angles to be greater than 180" but requiring that all acute angles are equal and all 
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edge Iength ratios 

solids edge-to-edge face-to-vertex 
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obtuse angles are equal will yield figures such as the pentagram or five pointed star 
shown in Fig. 4.6b. This figure has obvious relationships to the golden ratio as it 
may be ~ n s ~ c ~  from the five diagonals of a ~ @ a r  pentagon. 

A similar relaxing of some of the criteria for the construction of the regular 
polyhedra in three dimensions will yield additional solids. If the requirement that 
all vertices be convex (as viewed from the outside) is eliminated and faces are 
allowed to be regufar n-gons of the type shown in Fig. 4.6b then precisely four 
~~0~ regular polyhedra are existent. The r ~ u i r e ~ e n t  that all faces are 
identical and that all convex vertices are equivalent is imposed. Johannes Kepler 

(a) (W 

Fig. 4.6. (a) A rhombus and @) the pentagram or five pointad star. 

Table 4.4. Properties of the Kepi=-Poinsot solids. The quantity v refm to a convex vertex. 

solid e f V 

small stellated dodecahedron 30 12 12 
great dodecahedron 30 12 12 
great stellated d ~ ~ ~ o n  30 12 20 
great icosahedron 30 20 12 

www.riazisara.irاز سايت رياضي سرادانلود



Geometric Problems in Three Dimensions 31 

Fig. 4.7. The small stellated dodecahedron, 

discovered two of these four additional solids. These are the small stellated 
d o d ~ e d r o n  and the great stellated d ~ ~ ~ o n  and are i l lu~ated  in Figs. 4.7 
and 4.8, respectively. Both these solids are formed fiom twelve p e n t a ~ ~  faces. 
In the case of the small stellated dodecahedron the vertices of the pentagrams are 
arranged so that the intersection of five pentagrams forms a vertex of the solid. It 
may be viewed as a dodecahedron with a pentagonal pyramid on each face. The 
great stellated dodecahedron is formed in a similar manner except that the vertices 
are formed from the vertices of three pentagrams. The characteristics of these 
solids are given in Table 4.4. 

Two centuries after Kepler described the stelfated dodecahedra Louis Poinsot 
described two additi~nal regular solids {see e.g. Holden 1971). The great 
dodecahedron is formed from twelve faces which are regular pentagons and is 
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shown in Fig. 4.9. The great icosahedron is formed from twenty faces which are 
equilateral triangles and is shown in Fig. 4.10. The characteristics of these solids 
are described in Table 4.4. The great i ~ ~ ~ o n  is a ~ c u l a r l y  interesting 
figure as it demonstrates that twenty equilateral triangles can be arranged to form 
regular solids with thirty edges and twelve vertices in two distinctly different ways. 

An inspection of Table 4.4 will demonstrate the relationship of the Keplerian 
and Poinsot solids. The small stellated dodecahedron and the great dodecahedron 
are duals and the great stellated dodecahedron and the great icosahedron are duals. 
The mapping relationships between vertices and faces and between edges and 
edges as they have been described above for the Platonic solids can be applied to 
the Kepler-Poinsot duals as well. As a result of the obvious fivefold symmetry of 
these four new solids the scaling relations for the edge lengths in the mapping 
~ 0 ~ 0 ~  are related to the golden ratio, as are n ~ e r o u s  ratios of 
~ e ~ i o n s  of the solids ~ e ~ l v ~ .  

Fig. 4.8. The great SteUated dodecahebon. 
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Fig. 4.9. The great dodecahedron. 

Along the lines of the proof given above for the existence of five Platonic 
solids, it can also be shown that the Kepler-Poinsot solids constitute the complete 
set of regular polyhedra which allow for convex vertices. Thus only nine regular 
polyhedra can exist, which consist of four sets of duals and the tetrahedron which 
is self-dual. 

The present chapter has demonstrated that the solids which exhibit fivefold 
symmetry (which constitute six of the nine solids) have linear dimensions, surface 
areas and volumes which are related to the golden ratio. It is also shown that the 
three sets of fivefold symmetry duals can be rescaled by factors involving the 
golden ratio by utilizing face-to-vertex or edge-to-edge mapping transformations. 
This is similar to the deflation operations which were seen previously for golden 
triangles and golden rectangles and will play an important role in the discussion of 
tilings in Chapters 1 1 and 12. 
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Fig. 4.10. The great icosahedron. 
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CHAPTER 5 

FIBONACCI NUMBERS 

The Italian mathematician Leonardo de Pisa was born in Pisa around 1175 
AD. He is commonly known as Fibonacci which is a shortened form of Filius 
Bonaccio (son of Bonaccio). His father, Bonaccio, was a customs inspector in the 
city of Bugia on the north coast of Africa (presently Bougie in Algeria) and as a 
result, Fibonacci was educated by the Mohammedans of Barbary. He was taught 
the Arabic system of numbers and in the early thirteenth century returned to Italy 
to publish the book Liber Abaci (Book offhe Abacus) in 1202 (Leonardo di Pisa 
1857). This book introduced the Arabic system of numbers to Europe and is 
responsible for Fibonacci's reputation as the most accomplished mathematician of 
the middle ages. The book also posed a problem involving the progeny of a single 
pair of rabbits which is the basis of the Fibonacci sequence (or Fibonacci series). It 
was, however, Edouard Lucas, whose contribution to this area of mathematics will 
be discussed in detail in the next chapter, who rediscovered the Fibonacci 
sequence in the late nineteenth century, and properly attributed it to its original 
founder. 

The rabbit problem is as follows: 

A pair of adult rabbits produces a pair of baby rabbits once each month. Each pair of 
baby rabbits requires one month to grow to be adults and subsequently produces one 
pair of baby rabbits each month thereafter. Determine the number of pairs of adult 
and baby rabbits after some number of months. It is also assumed that rabbits are 
immortal. 

This problem may be expressed mathematically in this way: The number of 
adult rabbit pairs in a particular month (say month n+2), An+2, is given by the 
number of adult rabbit pairs in the previous month, An+l, plus the number of baby 
rabbit pairs from the previous month which grow to be adults, bn+l; 

An+* = A n + ,  +',+I . (5.1) 

3s 
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In a given month (say month n+l) ,  the number of pairs of baby rabbits will be 
equal to the number of adult rabbit pairs in the previous month; 

bn+, = A n  . (5.2) 

Combining Eqs. (5.1) and (5.2) gives the recursion relation for the number of adult 
rabbit pairs as 

(5.3) 

This recursion relation is identical to the expression for the additive sequence 
given by Eq. (2.1) and shows that the number of adult rabbit pairs will follow this 
kind of sequence. From Eq. (5.2) it is easy to see that the number of baby rabbit 
pairs will also follow the same sequence but will be displaced by one month. Since 
the total number of rabbit pairs is equal to the number of adult rabbit pairs plus the 
number of baby rabbit pairs then this quantity will also follow an additive 
sequence. 

Table 5.1. Number of baby rabbit pairs, bn , the number of adult rabbit pairs, An , and the number of total 
rabbit pairs, (b+& as a hnction of the number of months. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
6 10 
987 
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As an example the simple case of one adult rabbit pair which produces a pair 
of baby rabbits in the second month may be considered. Table 5.1 shows the 
population of rabbits as a function of the number of months. In general the table 
shows that 

Each of these sequences follows the additive sequence given in Eq. (2.2). The 
numb& which form this sequence are known as the Fibonacci numbers (see 
Vorobyov 1963), F,,, where 

F, =A, ,  (5 .5 )  

Thus beginning with the seed values which represent the number of adult and baby 
rabbit pairs in the first month the Fibonacci numbers may be calculated for all 
values of the index n, as given in Eq. (2.3). Although in the context of the rabbit 
problem Fibonacci numbers with negative indices have no physical meaning, they 
are important for some applications. Appendix I1 gives values of the Fibonacci 
numbers for indices from 0 to 100. 

There are numerous Occurrences of the Fibonacci numbers in problems related 
to a number of diverse fields. A few of the more interesting ones are described 
here: 

Along the lines of the rabbit breeding problem, the genealogy of bees is 
described in terms of Fibonacci numbers. The male bee, or drone, hatches from an 
egg which has not been fertilized. Fertilized eggs produce only females which 
become either workers or queens. Thus, the family tree of a single male bee may 
be constructed as shown in Fig. 5.1. The number of male bees and the number of 
female bees as well as the total number of bees is tabulated in Table 5.2. These are 
seen to follow the sequence of Fibonacci numbers and the recursion relations as 
derived above for the number of rabbit pairs can be shown to be applicable to the 
bee problem as long as it is assumed that bees, like rabbits, are immortal. 

Fibonacci numbers also appear in the field of optics. A system is constructed 
from two plane sheets of glass with slightly different indices of refraction. Rays of 
light which are incident on one piece of glass will undergo various numbers of 
internal reflections before emerging. Some examples of possible ray paths in this 
system are illustrated in Fig. 5.2. In each case the number of emergent beams, B., 
for n internal reflections is equal to a Fibonacci number. It is easy to see from an 
inspection of the figure that 
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Fig. 5 .1 .  Genealogy of a male (drone) bee; rn = male,f= female. 

Table 5.2. Genealogy of a male (drone) bee. 

generation &ales nfemales ntotal 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
0 
1 
1 
2 
3 
5 
8 
13 
2 1  

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
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Fig, 5.2, Internal r ~ ~ ~ o n s  fw a beam of tight incident upan two sheets of glass. Possible ray paths are 
shown €or (a) zero intemal mfleotions, @) one internal refledion, (0 )  two inf-emal reflections and 
(dj three &&ma1 mff&ions. 
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3, = Fn*2 * 

As a final example of the occurrence of Fibonacci numbers, a somewhat more 
mathematical problem will be considered here. A staircase consists of n stairs. 
This is climbed by taking either one step or two steps at a time and the number of 
different ways of climbing the stairs, S,,, is to be determined. E n  is 1 then the 
solution is simple, S,, = 1. If n = 2 there are two ways, two single steps or one 
double step, i.e. 1 + 1, or 2. For n = 3 there are three different ways; 1 + 2, 2 + 1 
or 1 + 1 + 1. This sequence can be generalized in the following way for n > 2, If a 
single step is taken initially then n - 1 stairs are left and there are S,,.., ~ ~ s i b i ~ i t i e s ,  
if two steps are taken initially then n - 2 stairs are left c o ~ e s p o n ~ n g  to Sn-2 
~ssibilities. Thus the number of possibilities for n stairs is equal to the mun of Sn-i 
and S+2. That is; 

which is equivalent to Eq. (5.3). This shows that the values of S,, follow the 
Fibonacci sequence with 

s, = Fn+, 

and the values of S,, for small values of n as given above confirm this. The 
appearance of the Fibonacci numbers in this type of problem is indicative of its 
occurrence in a large number of statistical problems invol~ng p e ~ u ~ t i o ~  and 
combinations. 

An interesting property of Fibonacci n ~ b e r s  deals with Fibonacci squares as 
shown in Figs. 5.3 and 5.4. In Fig. 5.3 an odd number, n, of different Fibonacci 
rectangles are constructed (in this case 7) of dimensions F, by F,+, where i takes on 
values from 1 to n + 1. It is seen that these rectangles may be arranged to form a 
square with outer dimensions of F,+, by F,,+,. The rectangles form a pattern which 
spirals outward much like the deflated golden rectangles of Fig. 3.5. Since the 
area of the square must be equal to the sum of the areas of the rectangles then Fig. 
5.3 is a geometric proof of the relation 

[n  odd] (5.9) 
i=2 
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13 x 21 

8 x  13 

5 x 8  

Fig. 5.3. A Fibonacci square comprised of an odd number of Fibonacci rectangles, 

In Fig. 5.4 a similar Fibonacci square is c o n ~ c ~  from an even n ~ ~ r  of 
Fibonacci rectangles, An area of dimensions 1 x I is lee over indicating that the 
Fibonacci square has an area of 1 square unit larger than the sum of the areas of 
the rectangles. This is expressed as 

(5.10) 
1=2 

These are two of the ~ n ~ e n ~ l  mat he ma ti^ re~ations~ps involving Fibonacci 
numbers which are presented in Appendix 111, 

An i ~ ~ t i o n  of the Fibonacci numbers in Appendix 11 indicates that these 
numbers increase rapidly as a ~ n c t ~ o n  of n,  though it is not readily apparent, 
there is a certain degree of periodicity in these numbers. Table 5.3 illustrates that 
the units digit of the F i b o ~ c i  n u m ~ r s  is cyclic with a ~ ~ o d i c i ~  of 60. That is, 
the units digit is the m e  as the units digit of Fs0 and also the same as the units 
digit of FlZo. The same is true of F,, FG1 and FI2,, etc. It appears as well that this 
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3 x 5  

2x3 

The Golden Ratio andFibonacci Numbers 

5 x 8  

21 x 34 

Fig 5.4. A Fibonacci square mmprhd of an even number of Fibonacci redangtes and an additional area of 
1 x lunit. 

periodicity continues indefinitely. It is found that there is also a periodicity in the 
ten's digits although the period is much longer. Similarly for the hundred's digits 
with an even longer period. It is speculated that this will extend to other digits of 
the Fibonacci numbers if sugiciently high values of n are investigated. 

It is interesting to look at relationships between various Fibonacci numbers. 
Spscificaliy the ratio of successive Fibonacci numbers is an interesting quantity. 
Table 5.4 gives some of these values. It is seen that as n increases then the ratio 
FJF+, approaches the golden ratio. Figure 5.5 shows that this ratio oscillates 
around the value of z as a ~ c t i o n  of n and ~ p t o t i ~ a l l y  a p p r ~ h e s  this value. 
This m y  be expressed as 
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Table 5.3. Periodicity ofthe units digit of Fibonacci numbers. 

0 0  1548008755920 535835925499096664087 1840 
1 1  250473078196~ 8670~739850794865805 1921 
2 1  ~ 5 ~ 7 3 9 5 3 ~ 8 8 1  14028366653498915298923761 
3 2  6557470319842 22698374052006863956975682 
4 3  10610209857723 36726740705505779255899443 
5 s  1~167680177565 59425114757512643212875125 

Table 5.4. Ratios of successive Fibonacci numbers. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
133 
23 3 
377 
6 10 

- 
1 .ooooo 
2.00000 
1.50000 
1.66667 
1.60000 
1.62500 
1.61539 
1.61905 
1.6 1768 
1.61818 
1.61798 
1.6 1806 
1.61803 
1.6 1804 
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and is a ~ d ~ e n ~  property of the Fibonacci sequence and the golden ratio. This 
re ia t ions~~ was first observed by Kepier, but a proof was not presented until more 
than a centufy later. The reasons for this property will not be discussed fwther 
here but will be clarified in Chapter 7. There are, however, W e r  relationships 
bemeen the Fibonacci numbers and the golden ratio; many of these are given in 
Appendix 111 and some will be shown later in this chapter to be of i r n ~ ~ c e  for 
c~cu la t in~  ~ i ~ n a c c ~  n ~ ~ r s .  

The most obvious method of c~culating a F i ~ n a c c ~  nurnber F,, is to first 
calculate the Fibonacci numbers Fn-* and Fn-2 and to add them together, This 
approach requires calculating all Fibonacci numbers of indices less than n before 
F, may be calculated. The calculation of the Fibonacci numbers given in Table 5.1 
by means of this method using a calculator or even by hand is s ~ ~ g h ~ o ~ ~ d *  

r- , 
k!! 
LLc 

3 4 5 6 7 8 9 10 
n 

Fig 5.5. Ratio ofsuo~essive Fibonacci numbers FJF-8 as a function of n showing the convergence to the 
value of the golden ratio. 
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However, the calculation of the Fibonacci numbers given in Appendix I1 by this 
metha becomes very tedious. The use of a computer greatly simplifies this task 
and the first 100 Fibonacci numbers can be generated in less than one second on 
an IBM Pentium. There are, however, some algorithms which can be utilized for 
the calculation of Fibonacci numbers with large n. A simple expression which is 
of use is 

F, = FdF'1-d Fn-d . (5.12) 

If d is the integer equal to n/2 (or (n+l)/2 if n is odd) then only Fibonacci numbers 
up to (approximately) n/2 need to be calculated in order to obtain F,. An even 
simpler and more elegant method relies upon the relationship between the 
Fibonacci n ~ b e r s  and the golden ratio. The r e l a t i o ~ ~ p  of i m ~ ~ c e  is 
referred to as the Binet formula, &er the French mathematician Jacques P W p e  
Marie Binet (1786-18561 and may be written as 

1 
F, =-- [Tn-( -2) -"]  . 4s (5.13) 

Thus a value of F, for any n may be calculated from the value of 2. Two factors, 
however, s h ~ ~ d  be ~ ~ i d e ~ ;  (1) as 7- is an i ~ t i o ~  number and the Fibonacci 
number is an integer there will inevitably be roundsff error introduced in this 
calculation and (2) i f n  is very large and a precise integer value of F, is required 
then the value of z which is used for the calculation must have a sufficient number 
of significant digits. From a practical standpoint it should be noted that if the 
second term on the right hand side of ECq. (5.13) is eliminated, the resulting 
expression; 

2, 
F, =- Js (5.14) 

will be accurate to better than 1% of the value of F, for n > 4. As this approximate 
value of F, will oscillate about the tnte values of F, as a ~ c t i o n  of n, an exact 
integer value of F, may be obtained from 

(5.15) 

provided that the value of T used for the  on is sufficiently precise. The 
fimction tMnc means the integer part of a number. These relationships (as well 
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as many others given in Appendix 111) clearly illustrate the relationship of the 
Fibonacci numbers to the golden ratio. 

One final aspect of Fibonacci sequences which is of relevance here relates to 
the rabbit problem. A geometric sequence may be constructed on the basis of the 
rabbit breeding rules, as shown in Fig. 5.6, where a pair of adult rabbits is 
represented by a large rabbit icon and a pair of baby rabbits is represented by a 
small rabbit icon. Baby rabbit symbols are placed immediately to the right of their 
parents and the sequence progresses to the right. This arrangement of adult (A) 
and baby (6 )  rabbits may be written as 

A b ~ b A b ~ b ~ b A b ~ b A b A  ... . (5.16) 

Fig. 5.6. Geometric sequence of Fibonacci rabbits as a finction of month. The large rabbit icon represents a 
pair of adult rabbits and the small icon a pair of baby rabbits. From Dunlap (1990). 

This sequence of A's and b's is d e t e ~ ~ ~ s t i c ;  that is, it may be extended 
indefinitely in a unique way because the rules for generating the next character in 
the sequence are well defined, In this sense it is distinct from a random sequence 
of A's and b's. However, it is also different from what is referred to as a periodic 
sequence. A simple example of a periodic sequence might be 
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AbAbAbAbAbAbAbAbAb.. . (5.17) 

where the pattern A b  is repeated indefinitely. There are several important 
characteristics of a periodic sequence; (1) a larger portion of the sequence may be 
generated by repeating a smaller portion of the sequence, in this case Ab, AbAb, 
AbAbAb, etc. may be repeated, and (2) these smaller portions of the sequence have 
the same ratio of A's to b's (two to one) as a larger portion of the sequence, 
including a sequence which is extended indefinitely. Neither of these 
characteristics applies to the Fibonacci sequence. One fundamental property of the 
Fibonacci sequence explains this behavior; the ratio of adult rabbits to baby rabbits 
in the limit of an infinite sequence is equal to the golden ratio, that is 

A 
lim-=r (5.18) 
n+m b 

Since 7 is an irrational number it cannot be represented by the ratio of two non- 
infinite rational numbers (or integers). This means that no finite portion of the 
Fibonacci rabbit sequence will have exactly the same ratio of adult to baby rabbits 
as the infinite sequence. Therefore, since repeating a finite portion of any 
sequence will produce a larger portion of a sequence with the same ratio of 
elements, a proper infinite Fibonacci sequence cannot be produced by repeating a 
finite sequence indefinitely. This type of sequence which is predictable but not 
periodic is referred to as aperiodic or, perhaps more properly, quasiperiodic. 

Even a small portion of a Fibonacci sequence has some Unique propehes and 
it would be of interest to be able to distinguish a small portion of a Fibonacci 
sequence from a sequence of A's and b's which did not exhibit true 
quasiperiodicity. This problem has been discussed in detail by Penrose (1989). A 
portion of a Fibonacci sequence which begins at the beginning of the sequence 
shown in Eq. (5.16) is easily identified by generating a portion of the Fibonacci 
sequence of the same length and making a direct comparison. A portion of a 
sequence which does not begin at the beginning of the sequence in Eq. (5.16) is 
more difficult to analyze. Some obvious rules can be deduced from an inspection 
of Eq. (5.16); (1) there are no occurrences of the pattern AAA and (2) there are no 
occurrences of the pattern bb. Although these observations are based on the 
examination of a limited portion of a Fibonacci sequence, they are generally true as 
well. Thus, a simple inspection of the sequence to be tested for these patterns is 
informative. However, the nonexistence of these patterns in a sequence is no 
assurance of a proper Fibonacci sequence; Eq. (5.17) is an obvious example. A 

www.riazisara.irاز سايت رياضي سرادانلود



48 The Golden Ratio andFibonacci Numbers 

simple Fibonacci test based on the deflation of a sequence exists. The deflation 
rules are as follows; 

(1) remove all isolated A's from the sequence 
(2) replace all A ' s  by b's and 
(3) replace all original b's by A's 

These steps are repeated until either the null set results, in which case the original 
sequence is a valid Fibonacci sequence, or a forbidden pattern of elements occurs, 
in which case the original sequence was not a valid Fibonacci sequence. This test 
is based on the principle that the deflation of a Fibonacci sequence is another 
Fibonacci sequence. The application of this test to a valid Fibonacci sequence is 
shown in Table 5.5 and the application to a non-valid Fibonacci sequence is given 
in Table 5.6. An interesting aspect of the results illustrated in the tables is seen by 
observing the number of elements in the sequence as a function of the number of 
deflation operations. This is seen to follow a sequence of Fibonacci numbers. In 
cases where the initial number of elements in the sequence to be tested is not a 
Fibonacci number the reduction in length at each deflation will be slightly difFerent 
from that given in the table until a Fibonacci number is encountered after which 
the numbers will follow the sequence of Fibonacci numbers. Thus the ratio of 
elements in the sequence before and after each deflation is given by F,,/F,,-,. As 
this ratio approaches the golden ratio in the limit of large n, this process may be 

Table 5.5. Deflation of a valid Fibonacci sequence. 

number sequence number of 
terms 

1 AA bAA bAbAA bAA 13 
2 bAbAAbAb 8 
3 AAbAA 5 
4 bAb 3 
5 AA 2 
6 b 1 
7 A 1 
8 {nul) 0 
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referred to, as in the case of the rescaling of the golden triangles or golden 
rectangles, as a deflation by a factor of 7. More will be said about this in Chapter 
10. 

Table 5.6. Deflation of a non-valid Fibonacci sequence. 

number sequence number of 
terms 

1 AAbAAbAAbAbAA 13 
2 bAbAbAAb 8 
3 AAAbA 5 
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CHAPTER 6 

LUCAS NUMBERS AND GENEWIZED FIBONACCI NUMBERS 

The discussion in the previous chapter d e m o n s ~ a ~  the relationship of the 
golden ratio to the additive sequence known as the Fibonacci sequence. This is 
generated by the additive r ~ ~ s ~ o n  relation (Es. (2.1)) using the seed values Fo = 0 
and 4 = I. Numerous other additive sequences can be formed by using different 
seed values. One, given by Eq. (2.14), has already been discussed. In the present 
chapter some additional possibilities for integer seed values will be considered. 
Using integers which are any consecutive terms in a Fibonacci sequence as seed 
values (e.g. 1,2; 2,3; 3 3  etc.) will merely yield a Fibonacci sequence with the 
values of the indices shifted. Using seed values which are multiples of Fibonacci 
nmbers (e,g. 0,2; 0,3; 2,2; 2,4; 6,lO etc.) will merely produce a Fibonacci 
sequence with all terms multiplied by a constant factor. Most of what has been 
discussed in the previous chapter will apply to such sequences, ~ c ~ a r l y  the fact 
that the ratio FJF#,.* will approach Tin the limit of large n. Certain choices of seed 
values will, however, yield additive sequences which are distinctly different from 
the Fibonacci sequence. One such ~ s s i b i ~ j ~  was studied extensively in the late 
nineteenth century by the French mathematician Edouard Lucas who published the 
results of these investigations in 1877. He considered the next smallest seed values 
LO = 2 and LI = 1. These values will generate the additive sequence 

(6.1) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ... . 

Mogous  to the discussion concerning Eq. (2.3), the Lucas sequence can be 
extended to negative indices as well to yield 

... 7, -4, 3, -I, 2, 1, 3, 4, 7, ... * (6.21 

In general, a comparison of Eqs. (2.3) and (6.2) allows for the determination of 
general expressions for Fibonacci and Lucas numbers with negative indices; 
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F', = (- 1) "' F, 

and 

L-, = (-1y L,  . (6.4) 

Table 6.1 gives values of some Lucas numbers and the ratio L,,/L,., . It is seen from 
the values in the fable that the ratio of Lucas numbers approaches the golden ratio 
as n becomes large. 

The so-called generalized Fibonacci numbers, G,, are produced from the 
recursion relation for an additive sequence with arbitrary values of the seeds. In 
general terms, for Go = p and GI = q, the sequence 

p* 4, p+q, p+2q, 2p+3q, 3p+5q, ... (6.5) 

Table 6. I .  Ratios of successive Lucas numbers. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

2 
1 
3 
4 
7 
11 
18 
29 
47 
76 
123 
199 
322 
52 1 
843 
1364 

- 
0.50000 
3 .OOOOO 
1.33333 
1.75000 
1.57143 
1.63636 
1.61 11 1 
1.62069 
1.6 1702 
1.6 1842 
1.61789 
1.61809 
1.61801 
1.61804 
1.6 1803 
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is produced. It is easy to see that the Fibonacci numbers are the coefficients of the 
p's and q's in the terms of this sequence. That is, 

G,, = F a P + L , q  * (6.6) 

It is of interest to consider an example of the generalized Fibonacci sequence. For 
seed values Go = 7 and GI = 3 the values of the terms of the additive sequence are 
given in Table 6.2. Again it is Seen that the ratio G,,IG,.t app~aches the golden 
ratio for large n. It is, in fact, true that the ratio of successive terms in any additive 
sequence approaches the golden ratio for large n, and the mathematical reasons for 
this will be  demons^^ in the next chapter. If non-integer or even non-rational 
values are permitted as seed values then this behavior still occurs. An i n ~ ~ t i ~ n  
of the additive sequence in Eq. (2.14) (and a comparison with Eq. (2.13)) indicates 
that for seed values Go = 1 and GI = 2, the ratio of terms in the sequence is z for dl 
values of n. 

Table 6.2. Ratios of succRMive n u m b  in the additive sequence generated by seed values 
G o = 7 t ~ d G 1 = 3 .  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

7 
3 
10 
13 
23 
36 
59 
95 
154 
249 
403 
652 
1055 
1707 
2762 
4469 

- 
0.42857 
3.33333 
1 . 3 0 0 ~  
1.76923 
1.56522 
1.63889 
1.610 17 
1.62105 
1.6 1688 
1.61847 
1,61787 
1.61810 
1,6 180 1 
1.61804 
1.6 1803 
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The c~culation of Lucas numbers follows very closely along the lines of the 
discussion in the previous chapter concerning the calculation of Fibonacci 
n~mbers. The simple, s ~ ~ g h ~ o ~ ~ d  method of calculating L, is to calculate all 
previous Lucas numbers and use the appropriate recursion relation. The 
relationship of Lucas numbers to the golden ratio may be used as a means of 
calculating L,. An expression which demonstrates the relationship between the 
Lucas numbers and the golden ratio is 

L, = 2 " - ( - 2 ) - n  . (6.7) 

A more practical expression for actually calculating values of L, is based on the 
fact that the second term on the right hand side of Eq. (6.7) is negligible for n 
greater than about 4; 

Table 6.3. Ratios of Fibonacci and Lucas numbers. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
I5 

0 
I 
S 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
23 3 
377 
6 10 

2 
1 
3 
4 
7 
1 1  
Sf) 
29 
47 
76 
123 
199 
322 
521 
843 
1364 

0.00000 
2.23607 
0.745 3 6 
1.11803 
0.9583 1 
1.01639 
0.99381 
1.00238 
0.99909 
~ . 0 ~ ~ 3 5  
0.99987 
1.00005 
0.99998 
1 .0000 1 
1 .00000 
1.00000 
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The above relations can be compared with those for Fibonacci numbers discussed 
in the previous chapter. A simple r e i a t i o ~ ~ p  between Fibonacci and Lucas 
numbers can be obtained of the form 

Ln=J31F;;, . (6.9) 

Table 6.3 illustrates the validity of this relationship for values of n greater than 4 
or 5. As well, a relationship which is usefid in calcu~ating large F i ~ ~ c c i  
numbers is 

F2,, = F,L, . (6.10) 

Another i n ~ r ~ n ~  property of Fibonacci and Lucas numbers deals with 
divisibility. A simple inspection of the first few Fibonacci numbers given in 
Appendix 11, reveals the following general trends; 

(1) F3 = 2 and this evenly divides all other even Fibonacci numbers. An inspection 
of the table shows that these are Fs = 8, Fb = 34, Fiz = 144, Fts = 610, ,.. 
etc. 

(2) F4 = 3 and this divides the Fibonacci ~ u m ~ r s  Fs = 2 I, FI = 144, F; = 987, 
Fz0 = 6765, ..* etc. 

These trends are easily extended and znay be expressed as the following simple 
theorem for n > 1: 

F, divides Fm if and only if m = h-n (k = 1,2,3,..). 

An inspection of the Lucas numbers in Appendix II does not reveal such obvious 
relationships between the L,. However, it can be shown (Carlitz 1964) that an 
  go^ ~ e o ~ ~  for the Lucas  umbers may be expressed (for n 1) as 

L, divides L, if and only if m = (2R-1)n (k = 1,2,3 ..& 
Examples of the validity of this theorem are; 

(I) Fz = 3 dividesF6 = 18, Fto = 123, ... etc. and 
(2) F3 = 4 divides F9 = 76, Fis = 1364, ... etc. 

It can also be shown that a similar relationship exists between the Fibonacci and 
Lucas numbers and may be expressed (for n > 1) as 

L, divides F, if and only if m = 2kn (k = 1,2,3 ...). 

The ~ c ~ a t i o n  of Fibona~i  or Lucas numbers in different ~ ~ u I i  is a topic 
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which is closely related to ~v~sibiIi ty as this deals with the remainder of the 
division process. The values of F,,(mod m) for 2 5 m < 9 and 0 5 n s 27 are given 
in Table 6.4. It is readily seen from this example that F,,(mod m) is periodic. In 
fact, this behavior has already been seen in the previous chapter where the units 
digit was shown to have a periodicity of 60. It should be noted that the units digit 
of F,, is merely F,(mod 10). The length of the repeat cycle for F,,(mod m) for some 
values of m is given in Table 6.5. Similar periodic behavior is observed for Lucas 
numbers as given in Tabie 6.6. As shown in Table 6.5, the periodicity of Lucas 
numbers is sometimes, but not always, the same as a function of rn as is found for 
the Fibonacci numbers. This behavior may be extended to higher values of m, but, 
as suggested in Chapter 5, the repeat cycle becomes longer as m increases. These 
concepts may also be extended to include periodic behavior of the digits of the 
generalized Fibonacci numbers. 

The problem of divisibility of a set of numbers also raises the question of 
prime factors. It may seem that the theorem concerning the divisibility of 
Fibonacci numbers given above may imply that F,, is prime if n is prime. It is, 
however, readily apparent that F4 = 3 is prime while n = 4 is not prime. It can be 
proved that F4 is the only Fibonacci number which is a prime for a value of n 
which is not prime (Vajda 1989). Thus for F,, (n f 4) to be a prime it is necessary 
for n to be a prime. However, this condition is not sufftcient for F,, to be prime. 
This is seen from the value of F19 = 4181 = 37 x 113. Thus the question of which 
Fibonacci numbers are prime is far from s ~ ~ g h ~ o ~ ~ d ,  although only values of 
F,, for which n is prime need be considered as possible candidates. An inspection 
of the values of Lucas numbers in Appendix I1 indicates that the question of prime 
factors of L,  is even more difficult. Table 6.7 gives the prime factors of Fibonacci 
and Lucas numbers for values of n r; 30. It is not known whether the infinite 
sequences of Fibonacci and Lucas numbers contain an infinite number of primes. 
It has, however, been claimed (see Schroeder 1984) that the infinite generalized 
Fibonacci sequence produced with seed values 

G, =17867727019288026322687~51304~~793 

G, = 10~9683225053915 11 1058165 141686995 
(6.1 I) 

contains no prime at all. The proof of this hypothesis is not known. 
The concept of an additive sequence can be extended to include other 

recursion relations than that given in Eq. (2.1). One natural extension is to 
consider the sequence of numbers where each term is the sum of the previous three 
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Table 6.4. Values of Pibonnwi numbers in moduius m, F+od m). The repeat cycle for the pexiodidy is 
&own in bold face. 

n F;, m=2 m=3 m=4 m=5 m=6 m=7 n=8 m=9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 
2584 
4181 
6765 
10946 
17711 
28657 
46368 
75025 
121393 
196418 

0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
t 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 

0 
1 
1 
2 
0 
2 
2 
1 
0 
1 
1 
2 
0 
2 
2 
1 
0 
1 
1 
2 
0 
2 
2 
1 
0 
1 
1 
2 

0 
1 
1 
2 
3 
1 
0 
1 
1 
2 
3 
1 
0 
1 
1 
2 
3 
1 
0 
1 
1 
2 
3 
1 
0 
1 
1 
2 

0 
1 
1 
2 
3 
0 
3 
3 
1 
4 
0 
4 
4 
3 
2 
0 
2 
2 
4 
1 
0 
1 
1 
2 
3 
0 
3 
3 

0 
1 
1 
2 
3 
5 
2 
1 
3 
4 
1 
5 
0 
5 
5 
4 
3 
1 
4 
5 
3 
2 
5 
1 
0 
1 
1 
2 

0 
1 
1 
2 
3 
5 
1 
6 
0 
6 
6 
5 
4 
2 
6 
1 
0 
1 
1 
2 
3 
5 
1 
6 
0 
6 
6 
5 

0 
1 
1 
2 
3 
5 
0 
5 
5 
1 
7 
1 
0 
1 
1 
2 
3 
5 
0 
5 
5 
1 
7 
1 
0 
1 
1 
2 

0 
1 
1 
2 
3 
5 
8 
4 
3 
7 
1 
8 
0 
7 
8 
7 
6 
4 
1 
5 
6 
2 
8 
1 
0 
1 
i 
2 
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58 The Golden Ratio and Fibonacci Numbers 

terms. This is expressed as 

T, = T*l+ q - 2  4- c-3 (6.12) 

and numbers which obey this relation are referred to as T~bonacci n ~ b e r s .  
Three seed values are required to generate such a sequence, and, in a manner 
analogous to the various problems involving Fibonacci numbers, a natural choice 
for seed values to investigate the properties of Tribonacci numbers might be TO = 0, 
TI = 0 and T2 = 1. These seed values will yield the sequence given in Table 6.8. 

Along the lines of the previous discussions it is of interest to consider the ratio 
of successive terms in this sequence, This is given in the table. This ratio appears 
to converge to a well defined value, although not the golden ratio. For large n this 
value is found to be T,,/Tn-,= 1.8392867552 1416113255 1852564653 2866004241 
787460975 ... . The mathematical reason that the ratio of Fibonacci numbers 
approaches the golden ratio will be discussed in detail in Chapter 7. The reason 
the ratio of Tribonacci numbers approaches the value given above is beyond the 
scope of this book. It is possible, however, to gain some insight into the origins of 
this number. It can be recalled that the value of the golden ratio satisfies the 

Table 6.5. Length of the repeat cycle for F,,(mod m )  and L,(mod m). 

periodicity 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

I 
3 
8 
6 
20 
24 
16 
12 
24 
60 
10 
24 

1 
3 
8 
6 
4 

24 
16 
12 
24 
12 
10 
24 
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n L, m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

2 
1 
3 
4 
7 
11 
18 
29 
47 
76 
123 
199 
322 
52 I 
843 
1364 
2207 
3571 
5778 
9349 
15127 
24476 
39603 
64079 
103682 
16776 1 
27 1443 
439204 

0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 

2 
1 
0 
1 
1 
2 
0 
2 
2 
1 
0 
1 
I 
2 
0 
2 
2 
1 
0 
1 
1 
2 
0 
2 
2 
1 
0 
1 

2 
1 
3 
0 
3 
3 
2 
1 
3 
0 
3 
3 
2 
1 
3 
0 
3 
3 
2 
1 
3 
0 
3 
3 
2 
1 
3 
0 

2 
1 
3 
4 
2 
1 
3 
4 
2 
1. 
3 
4 
2 
1 
3 
4 
2 
1 
3 
4 
2 
1 
3 
4 
2 
1 
3 
4 

2 
1 
3 
4 
1 
5 
0 
5 
5 
4 
3 
1 
4 
5 
3 
2 
5 
1 
0 
1 
1 
2 
3 
5 
2 
1 
3 
4 

2 
1 
3 
4 
0 
4 
4 
1 
5 
6 
4 
3 
0 
3 
3 
5 
2 
1 
3 
4 
0 
4 
4 
1 
5 
6 
4 
3 

2 
1 
3 
4 
7 
3 
2 
5 
7 
4 
3 
7 
2 
1 
3 
4 
7 
3 
2 
5 
7 
4 
3 
7 
2 
1 
3 
4 

2 
1 
3 
4 
7 
2 
0 
2 
2 
4 
6 
1 
7 
8 
6 
5 
2 
7 
0 
7 
7 
S 
3 
8 
2 
1 
3 
4 
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60 The Golden Ratio andFibonacci Numbers 

Table 6.7. Prime facton of Fibonacci and Luoas numbers. Primes are given in bold face. 

n F” 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0 
1 
1 
2 
3 
5 

13 
3x7 
2x17 
5x11 
89 
22x32 
233 
13x29 
2x5~61 
3X7X47 
1597 
23x17x19 
37x 113 
3X5xllX41 
2x13~421 
89x 199 
28657 

5’x3001 
233x521 
2X17X53X109 
3X13X29X281 
514229 
23x5x1 1x31~61 

23 

25x32x7x23 

2 
1 
3 
22 
7 
11 
2x3’ 
29 
47 
22x 19 
3x41 
199 
2x7~23 
521 
3x281 
22x 11x3 1 
2207 
3571 
2 ~ 3 ~ ~  107 
9349 
7x2161 
2’x29x2 11 
3x43~307 
139x461 
2x47~ 1103 
11x101~151 
3x90481 
2’x 19x5779 
72x 14503 
59x 19489 
2x32x41x2521 
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Lucas Numbers and Generalized Fibonacci Numbers 61 

Table 6.8. The Tribonacci numbers and their ratios. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
0 
1 
1 
2 
4 
7 
13 
24 
44 
81 
149 
274 
504 
927 
1705 

- 
1 .ooooo 
2.00000 
2.00000 
1.75000 
1.85714 
1.846 15 
1.83333 
1.8049 1 
1.83951 
1.83893 
1.83942 
1.83929 
1.83927 

Fibonacci quadratic equation given by Eq. (2.9). The analogous expression which 
is of relevance for the Tribonacci sequence is the Fibonacci (or Tribonacci) cubic 
quation given by (Dunlap 1996) 

(6.13) 

It can be shown that this equation has two imaginary roots and one real root (see 
Abramowitz and Stegun 1964). The real root is given by 

3 2  x - x  - x - 1 = 0  . 

(6.14) 

which has the value 1.83 9287 . . . . This generalization of the additive sequence can 
be extended with predictable results. 
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CHAPTER 7 

~ O N T ~ U E D  FRACTIONS AND RATIONAL APPROXIMANTS 

Any irrational number, I, can be expressed in terms of an infinite number of 

(7.1) 

integers, a& al, u2 .,. in the form 
1 

1 I = a , +  

a1 + 1 
a2 + 1 

a3 + 1 
u4 +- 

a,+ ... 
This kind of expression is called a continued fraction ( S c b a  
written in more compact form as 

I =[a,,a,,u,,a,,u,,u,,...l 

984) and can be 

(7.2) 

The golden ratio may be expressed in this form if the proper values of all of the at's 
are determined. This is relativeIy straightforward. Consider the quadratic 
equation given by Eq. (2.23); 

(7.3) x + x - l = O .  

The positive solution of this equation is x = l/r. The quadratic equation may be 
rewritten as 

x(x+ 1) = 1 (7.4) 
or 

x = - ,  (7.5) 

2 

1 

l + x  
The x on the right hand side of the equation can be replaced by l/fl+x) to give 

63 
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64 The Golden Ratiu and Fibonacci Numbers 

1 

1+- 
l + x  

x=- 
1 .  

This substitution process may be continued indefinitely to give 

1 
1 X =  

1 
1 

1+ - 1 
l + -  

l+. . . 

1+ 
I+ 

Since the solution to Eq. (7.3) is lh, Eq. (7.7) becomes 
1 

1 
1 

l+- 
l+- 

- -- 1 

-r 1+ 

1 

I+. . 
The inverse of the goiden ratio is related to z by the simple relation 

then J2q. (7.8) gives the golden ratio as 

7 = 1+ 

1 
2=14- , 

? 

1 
1 

1 
l+- 

1+- 

1-t 

1 

1+ ... 

A simple comparison of Eqs. (7. I) and (7.10) shows that 

7' = {ao ,a, 'a2 $3 ,a.+,as ,... 1 = ~~,1,1,U1,.'.1 

(7.7) 

(7.9) 

(7.10) 

(7; 11) 

In an actual calculation, an infinite number of terms in the continued fraction form 
for 7 cannot be included. Therefore, an actual calculation would terminate after 
some finite number of terms, n, and, the continued fraction would be expressed as 
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Continued Ractions and Rational Approximants 65 

[ao, al, u2, ..., a,,]. This representation of an irrational number is referred to as the 
n* ratiod approximant. The rational approximants of the golden ratio are merely 
[l,l,l,l, ..., l] and are given as a function of n (where n is the number of 1's minus 
1) in Table 7.1. A comparison of the values in this table with those of Table 5.4 
shows that the nth rational approximate of the golden ratio, z,,, is merely 

(7.12) 

It is obvious now why the ratio of successive Fibonacci numbers approaches the 
golden ratio in the limit of large n. 

This same approach may be taken with the sequence of Lucas numbers, and 
the rational approximants may be expressed as in Table 7.2. A consideration of the 
rational representation in Table 7.2 in the context of the continued fiaction 
representation shows that 

1 1  

2 2  
--- - 

3 1 
- = I + -  
1 1/2 

4 1 
-=I+- 

1 
1+- 

I/ 2 

7 1 
-= 1+  1 

l+- 1 
1+- 

1/2 

(7.13) 

Thus it is easy to see that the nth rational approximant based on the Lucas 
numbers is given by [ao. al, az ,..., a,,] = [ 1,1, ..., 1/21. Clearly as n bkomes large the 
importance of the fact that the final term in the rational approximant is 112 rather 
than 1 as it is for the Fibonacci sequence becomes vanishingly small, and it is 
apparent that the ratio of Lucas numbers will also approach the golden ratio in the 
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66 The Golden Ratio and Fibonacci Numbers 

Table 7. I .  Rational approximants of the golden ratio. 

n rational decimal value 
representation 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
21 1 
312 
513 
815 
1318 

21/13 
34/21 
55134 
89155 
144189 

1 .ooooo 
2.00000 
1.50000 
1.66666 
1.60000 
1.62500 
1.61539 
1.6 1905 
1.61768 
1.61818 
1.61798 

Table 7.2. Rational approximants for the golden ratio based on the Lucas numbers. 

n rational decimal value 
repres~ntation 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
I0 

112 
311 
413 
714 
1117 
18/11 
29/18 
47129 
76147 
123176 
1991123 

0.50000 
3 .ooooo 
1.33333 
1.75000 
1.57 143 
1.63636 
1.61111 
1.62069 
1.61702 
1.61842 
1.61789 
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Continued Fractions and Rational Approximants 67 

limit of large n. The final additive sequence which was discussed in detail in 
Chapter 6, i.e. Go = 7 and GI = 3, may also be considered. Table 7.3 shows the 
rational approximants based on this sequence. In terms of the continued fraction 
representation it is seen that 

3 3  

7 7  
--- - 

1 
- 1+- 

10 

3 317 
-- 

13 1 
- = 1 + 1  
lo 1+- 

317 

23 1 -- 
1 - 1+  

l 3  l + T  
(7.14) 

I 
1+- 

317 

Thus the n* rational approximant based on this additive sequence is given by [ao, 
al, az ,..., a.] = [1,1, ..., 3/71. Again as n becomes large the importance of a, 
becomes small and it is clear why the ratio of terms in this additive sequence also 
approaches the golden ratio. On the basis of the evidence presented above it is 
possible to draw some general conclusions concerning the ratios of the terms in an 
additive sequence. For seed values Go = p and GI = q, the n* rational approximant 
is expressed as 

(7.15) 

This relationship may be shown to be valid in a somewhat more rigorous manner 
by considering the ratio of terms in a generalized Fibonacci sequence, G.+I/G,. 
From the definition of the additive sequence it is known that G,+I = G,+G,.1, so 
the ratio may be expressed as 

4 

P 
[a, ,a, ,a2, ... 3 an I = [l,l ,l , .*. , -1 . 

(7.16) 
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Table 7.3. Rational approximants for the golden ratio bssul on the additive sequence with GO = 7 
ade, = 3. 

n rational decimal value 
representation 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3 17 
10/3 
13110 
23113 
36123 
59/36 
95159 
154195 

249/ 154 
4031249 
6521403 

0.42857 
3.33333 
1.30000 
1.76923 
1.56522 
1.63889 
1.6 1017 
1.62105 
1.61688 
1.6 1 847 
1.6 1787 

or 

yields 

(7.17) 

(7.18) 

(7.19) 

Contin~ng this ~ b ~ ~ t i o R  process leads to 
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I 

1 

... G, /Go 

l+ 
1+ 

or merely 

-- G"+ 1 - [l,l,l,.. , , GI / G o ]  . 
Gn 

69 

(7.20) 

(7.21) 

In the case of the Fibonacci sequence, Go = 0 and the term involving GO will vanish 
leaving the GdGl= 111 term as the lowest order remaining term. 

The accuracy with which an irrational number may be a p p r o x i ~ t ~  by its 
rational a F p ~ ~ ~ ~  may be j u d ~  by c o m ~ ~ ~ g  the a e t d  d u e  of the irrational 
number, I, to G,,+l/G* Certainly as n increases the difference A(n) = I I - Gn+I/Gn I 
will decrease. However, for a given value of n it can be shown that among all 
irrational numbers, A(n) is the largest for the golden ratio. This means that if we 
were to assign a measure of the degree of irrationality of an irrational number on 
the basis of the quantity A@), we would conclude that the golden ratio was the 
most irrational of all irrational numbers. 

A physical system which demonstrates the principles of continued fractions 
and rational approximants is the infinite resistor network shown in Fig. 7.1. The 
total mistance of the network, R, is given by 

R = [ R I , R z , q 3 ,  . . .I . (7.22) 

Fig. 7.1. An infutite resistor network. 
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70 The Golden Ratio and Fibonacci Numbers 

In the case where all resistors are 1 ohm then the resistance is given by R = 

[l,l,l, . . .J  and from Eq. (7.10) a resistance of 7 ohms is o b ~ n e d .  Further 
discussion of this problem can be found in March (1993) and S ~ n i v a s ~  (1992). 

The above results have justified the observations which were presented in 
Chapters 5 and 6 concerning the ratios of successive terms in an additive sequence 
and have demonstrated the relevance of the golden ratio to the properties of a 
generalized Fibonacci sequence. The concept of rational approximants has been 
introduced and this will be seen to play an important role in applications of the 
golden ratio discussed in later chapters. 
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CHAPTER 8 

G E N E ~ ~ Q  FIBONACCI ~ P ~ S E N T A ~ O N  T H E O ~ M S  

The representation theorems discussed in this chapter are based on the fact 
that a generalized Fibonacci sequence forms a complete set. A sequence of 
integem is said to be complete if any positive integer can be expressed as a sum of 
a finite number of the terms in the sequence and each term is used, at most, once. 
Before dealing with generalized Fibonacci sequences in this respect, a c o ~ o ~ y  
kxiown complete set will provide an i ~ o ~ t i v ~  exampge of r ~ r ~ e n ~ ~ o n  
theorems. 

The binary number system is based on the fact that the powers of 2, (Le. 2’, 2’, 
2’, z3, ..,I, form a complete set. ~ n y  integer, M, may be expressed as a sum of a 
fiNte number of terms invol~ng the powers of 2 and appropriate coefficients. 
This is expressed as 

N 

M =  2 3 q 2 ’  
i=O 

(8.1) 

where the ooe&cients, q, are 0 or I. The value of N is chosen such that 

2 N I M < 2 N f ’  . (8.2) 

As a simple example of the binary system the number 12 may be represented as 
1100 since 

12= 1x23 +1x22 +OX2’ +ox2* * (8.3) 

N i s  chosen to be 3 as z3s 12 < 24 (Le. 8 S 12 16). The set of powers of 2 with 
any one term removed is not complete as it does not allow for the binary 
representation of all integers. 

The set of Fibonacci numbers (Fa F3, F4, ...) forms a complete set. The 
inclusion of FO = 0 is unnecessary and the inclusion of Fl = 1 is ~ ~ ~ t .  The 
set of Fibonacci numbers (Fs Fs, F4,  ...) with any one term removed is not 
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72 The Golden Ratio and Fibonacci Nsmbsrs 

complete, ~ t h o ~ g h  the ~nc~us~on of FI allows for the ~i~ removal of any 
single other term without loss of completeness. The set of F i ~ ~ c c i  numbers (Fa 
F;, F4, ...) will be considered as a complete set for the d e m o ~ ~ t i o n  of 
~ p ~ s e n ~ t i o n  theorems in the present chapter. 

Any positive integer may be represented as a fhite sum of Fibonacci numbers 
with appropriate coefficients cq = (0,l) as 

The choice of N is not so well d e f i n ~  as in the case of the binary system, Choosing 
N such that 

1 5 FN (8.5) 

is a sac ien t  condition  though a smaller value of N may, in some cases, be 
suitable as will be shown below, As an example of Fibonacci representation the 
number 12 is considered. It is easy to see that 12 may be written as 

(8.6) 

Thus in Fibonacci representation the number 12 is written as 10101. Table 8.1 
shows possible Fibonacci represen~tions for the first 20 positive integers. The 
results il~us~ated here are distinct from those which are obtained from the powers 
of 2 represen~tion as Tabte 8.1 clearly shows that certain integers (in fact most of 
them) can be represented in more than one way by a sum of Fibonacci numbers. A 
few integers have only one representation and these are seen to follow a particular 
pattern. In fact it can be shown that a single Fibonacci representation of A4 exists if 
and only if 

12 = IX Fs + O X  Fs +Ix F4 + O X  F3 + l x  F, . 

M = F ,  - 1  [n = 1,2,3, . . . I  (8.7) 

If Fibonacci numbers are to form the basis of a useful system of integer 
representation it would be desirable to have a unique representation for each 
integer. An inspection of the data in Table 8.1 shows that the various 
~ p ~ s e n ~ t i o n s  for the same integer m y  be classified on the basis of the number of 
1's which are present in the Fi~nacci  r e p r ~ e ~ ~ ~ o n .  The r e p ~ ~ n ~ t i o n  which 
contains the smallest number of 1's is called the ~ ~ r n a l  or canonical 
~ p ~ n t a t i o n  of the integer and the table shows that this is, in each case, unique, 
at least for integers up to 20. It can be shown that this is a general property of 
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Table 8.1. Fibonacci representations for the integers 1 to 20. 

integer Fibonacci representation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
10 
100 
101 
1000 
1001 
1010 
10000 
1000 1 
10010 
10100 
10101 
100000 
10000 1 
1000 10 
100100 
100101 
101000 
101001 
10 10 10 

or 

or 
or 

or 
or 
or 
or 

or 
or 
or 
or 
or 
or 
or 

11 

110 
111 

1100 
1101 
1110 
10011 

11000 
11001 
11010 
10001 1 
11101 
1001 10 
1001 11 

or 

or 

or 
or 

or 

or 
or 

101 1 

1111 

10110 
10111 

11100 or 11011 

11110 
11111 

Fibonacci representations. Thus the condition that the canonical representation 
should be chosen over other Fibonacci representations will yield a unique 
representation for each positive integer. An interesting property of the canonical 
representation known as Zeckendorf's theorem (see Vajda 1989) is helpful in 
immediately idenwing the minimal representation for an integer. This states that 

fficri+, = 0 [i = 1,2,3 ,..., N-1] . (8.8) 

This may be stated in the alternate way; no two consecutive digits in the canonical 
representation are non-zero. This condition is both sufficient and necessary for 
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identifying the canonical representation. Thus the application of Zeckendorfs 
theorem allows for the determination of a unique Fibonacci representation for each 
positive integer as given in Table 8.2. 

Extending the above representation theorems to the Lucas numbers it can be 
shown that (Lo, LI, L2, ...) forms a complete set. L1 is required because 1 is a 
required element in any complete set, LO is required because 2 is a necessary 
element in any complete set (unless there are two 1's). Because these terms are a 
requirement for completeness then the Lucas sequence with any one arbitrary 
element removed is not complete. For the complete Lucas sequence each integer 
can be represented as 

N 
M =  &Li 

i=O 

where 

A45 L, 

(8.9) 

(8.10) 

is a sufficient but not stringent condition on the determination of N.  The Lucas 
representations of the integers from 1 to 20 are given in Table 8.3. As with the 
Fibonacci representations, these are not unique. In fact they are not entirely 
analogous to the Fibonacci representations as only 1 (represented as 10) and 2 
(represented as 1) are unique. The consideration of the minimal representation 
does not resolve this ambiguity as 5 and 16 (as well as larger integers not given in 
the table) have more than one minimal representation. The application of 
Zeckendorfs theorem does not resolve this problem either as the two minimal 
representations of 5 and 16 both satisfy Eq. (8.8). Some additional constraint must 
be imposed on Lucas representations in order to insure uniqueness. Equation (8.8) 
is &dent for this purpose if it is also required that 

oooz = o  (8.11) 

That is, both Lo and Lz are not used in the same representation. Thus for 5, the 
correct Lucas representation is 1010 rather than 101 and for 16 it is 101010 rather 
than 100 10 1. The canonical Lucas representations for the first 40 positive integers 
are given in Table 8.2. 
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Table 8.2. I)ecimal, binary, canonical Fibonacci and canonical Luw representations of the tirst 40 positive 
integers. 

decimal binary Fibonacci Lucas 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

1 
10 
11 
100 
101 
110 
111 

1000 
100 1 
1010 
101 1 
1100 
1101 
1110 
1111 
10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 
11000 
11001 
11010 
11011 
11100 
11101 
11110 
11111 
100000 

1 
10 
100 
101 
1000 
1001 
1010 
10000 
1000 1 
10010 
10100 
10101 
100000 
10000 1 
100010 
100100 
100101 
101000 
101001 
101010 
1000000 
1000001 
1000010 
1000100 
1000101 
1001000 
1001001 
1001010 
1010000 
1010001 
1010010 
1010100 

10 
1 

100 
1000 
1010 
1001 
10000 
100 10 
10001 
10100 
100000 
100010 
100001 
100100 
101000 
101010 
101001 
1000000 
10000 10 
100000 1 
1000 100 
1001000 
1001010 
1001001 
1010000 
1010010 
1010001 
10 10 100 
10000000 
100000 1 0 
1000000 1 
10000100 
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Table 8.2. oontinued 

33 
34 
35 
36 
37 
38 
39 
40 

100001 
100010 
1000 1 1 
100100 
100 10 1 
100 1 10 
100111 
101000 

1010101 
10000000 
1000000 1 
100000 10 
10000 100 
10000 10 1 
1000 1000 
1000 100 1 

1000 1000 
1000 10 10 
1Mw)1001 
100 10000 
100 10010 
10010001 
100 10 100 
10100000 

Table 8.3. h c a s  representations of the first 20 positive integers. 

integer Lucas representation 

1 10 
2 1 
3 100 
4 1000 
5 1010 
6 1001 
7 10000 
8 10010 
9 1000 1 
10 10100 
11 100000 
12 100010 
13 10000 1 
14 100100 
15 101000 
16 101010 
17 101001 
18 1000000 
19 1000010 
20 100000 1 

or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 

11 
110 
101 
111 
1100 
1110 
1101 
1001 1 
11000 
10101 
11001 
10001 1 
1001 10 
100101 
1001 11 
110000 
110010 
110001 

or 

or 
or 
or 
or 
or 
or 
or 
or 
or 
or 
or 

101 I 

1111 
10110 
11010 
10111 
11100 or 11011 
11110 
11 101 
11111 
101100 or 101011 
101 110 
101 101 
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An investigation of the results in Tables 8.1 and 8.3 shows that although the 
canonid representation using either Fibonacci or Lucas numbers is the minimal 
{or one of the ~~~) ~ p ~ n ~ t i o n s  in the sense that it cantains the ~~ 

n u m ~ r  of 1's of all possible ~ ~ n ~ t i o ~ ,  it contains the ~~ number of 
digits (including zeros). The result of this observation is that Eqs. (8.5) and (8.10) 
may be taken as reliable measures of N when determining the canonical 
representations of numbers. 

An extension of these representation theorems to a genedized Fibonacci 
sequence may seem to be of interest. Hower, the investigation of such 
possibilities is unproductive. Completeness quires a set of numbers to include 1 
so that the number 1 may be represented. It also requires either 2 or a second 1 so 
that the number 2 may be represented. Considering only positive seed values for 
the sequence and noting that 0 is not required for completeness it is easy to see that 
only three ~ m b i ~ t i o n s  of two seed values are possible; I and 1; 1 and 2; and 2 
and 1. The first two generate the Fibonacci sequence and the third genemtes the 
Lucas sequence. 
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CHAPTER 9 

OPTIMAL SPACING AM) SEARCH ~~S 

A number line, say of length 1 unit .from [0,1), my be divided into two 
segments by placing a point on the line at a location determined by the value of a 
real numbr, R. The terminology [0,1) indicates a line (or set) which includes the 
point 0 but excludes the point 1. If R 2 1 then it may be plotted on the line by 
using the hctional part of R,@uct(R). The line may be divided into n+l segments 
by plottiqg the n values given by 

Puct(R), jFuct(IZR),.. . jFuct(nR) . (9.1) 

I f R  is a rational number then a limited number of distinct points will be produced 
by Eq. (9.1) even in the limit of n -+ ao. For example, if R = 0.5 then only two 
points will be produced by Eq. (9.1) since jFuct(O.5m) = 0 for all even m and 
~uct(0.5m) = 0.5 for all odd m. 

An irrational number, on the other hand, will divide the line into n + 1 
segments. An important theorem relating to this is as follows: 

Ifthe n points! generated byfrulct(mR) fmm = 1,2,3, ...,a €or an irrational value ofR 
are plotted on the line [OJ) then the resulting n f 1 line segments will have at most 

(The corresponding theorem relating to ratio4 numbers states that at most twcr 
Merenr segment lengths occur.) Although a formal proof of this theorem is not 
obvious, the gene& validity of this statement can be  demo^^ by plotting a 
few examples for Merent values of R. 

For certain a p p l i ~ t i o ~  it is desirable to have the most ~o~ division of the 
number line for a given value of n. That is, the three segments should be as close 
as possible to the same length for any value of n. The possible applications of this 
are discussed later in this chapter and in Chapter 13. I f R  is much less than unity 
then the procedure given in Eq. (9.1) will yield a cluster of points around mro and 
one much Iarger segment for the rest of the line. If R is near d t y  then the cluster 

three &ffmmt lengths. 

79 
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of points will occur near 1.0. If R is near 0.5 then the points will occur near 0, 0.5 
and 1 .O. In any of these cases the distribution of segment lengths, at least for small 
n, will not be very uniform. It has been determined that the most uniform 
~ s ~ b u t i o n  of points on the line will occur for R = 7 (or ~ u i v ~ e n ~ y  Ii = r k  for 
integer k). The first ten points generated using this algorithm are illustrated in 
Fig. 9.1. In this case it is seen that identically one point occurs in each 0.1 interval 
on the number line and that three d8erent length tine segments, S, M, and L are 
produced. The ratios of the lengths of these segments can be shown to be 

M M S M  L M S M  I M S  
5 1 0 2  7 4 9 1  6 3 8  

i = ;  ; : =  :-- : s :  = : =  :- , - 1 -  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Pi& 9.1. Division of the number time [QJ) by the ten points generated by the function ~ u ~ ~ ~ ~ )  (for 
m = l,Z,3, JO). Numbers associated with the points give the values of m and indi- the 
sequence in which the points are generated The des i~at~on  S, M and t refw to the three distinct 
segmenttengths,S=0.0557,M=0.0902 andL=O.1459. NotethatLIM=M/S= mr. 

Plotting the points given b y ~ u c ~ ( m ? 2 )  (for m = 1,2,3,.JO) will yield the same 
points plotted in the same order as@act(mz). However, it is straightforward to 
show that the case for r 2  is not extended to higher powers. Table 9.1 gives the 
WuenE of points which are plotted first on the number Iine by_fiucf(mr’j (i.e. for 
m = 1) as a function of k in terms of those which are plotted for k = 1. It is obvious 
that these n~~~ follow a Fibonacci sequence. 

The same procedure may be used to distribute points on the circumference of a 
circle, The points may be plotted as a fimcfion of angle around the circle as 
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B = mod,,(?) , (9.3) 

where modz, means the remainder of a division by 2n. This is shown in Fig. 9.2 
for a value of k = 1. The trends as a ~ c t i o n  of k for this problem are also 
described by Table 9.1. 

Table 9.1. Lucation of the fvst pint plotted on the line [Qt) as a function dk for the generating fundion 
frac~m.r*) 8s dekbed in the text. The points BFI) labeled amording to Uie sequence shown in 
Fig. 9.1. 

k first point 
F ~ O ~ ~  

1 1 
2 1 
3 2 
4 3 
5 5 
6 8 

The ~ ~ s ~ o n  of zul interval into s e ~ e n t s  is direcay related to the methods of 
i ~ t i n g  the ~ n i m u m  (or m ~ m ~ )  of a fhnction. The method as described 
below may be applied if it is ~~~ that the ~ c t i o ~  is ~ r n ~  on the  in^^^ 
a < x < d. Unimodal means that the ~ c t i o n  has only one ~ ~ r n ~  (or 
~ ~ ~ ) *  ~ t h e ~ t i ~ l y  speaking, this r ~ ~ r e m ~ n t  is sati6ied if the second 
d e ~ ~ a t i ~ e  of the ~ c ~ o n  does not change sign over the interval. F i ~ e  9.3 shows 
an example of such a fbnction. The location of the minimum in this function may 
be found in the fo l io~ng way: Two points b and c are chosen in the ~ n t e ~ a l  such 
that the line s e ~ e n ~  lengths a6 = cd € ad12, The hct ion is eval~ted at the 
points 6 and c, i.e. &b) ~ d A c ~ ~  r ~ ~ t i v e ~ y ~  EAb) <Ac) then the ~ n i m ~  is in 
the i ~ t e ~ ~  ac, ~~~) >fit) then the ~~~~ is in the interval ttd. This cast be 
seen in Fig. 9.3, where the m i ~ m ~  occurs in the interval ac, The new interval, 
in this case ac, is divided by two new points and the location of the ~~m~~ is 
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Fig. 9.2. Division of the circle by the point generated by modz,(2mn/rk) (for k = I and m = 1,2,3, ..., 10). 
The origin is marked by 6= 0 and the direction of increasing @is shown by the mow. The radial 
lines divide the circle into ten equal segments in order to better illustrate the d i ~ b u t i o n  of points 
on the circumference. 

determined within the new Sub-inte~aIs. By cont~nuing applying this method the 
range of x values c o n ~ i ~ n g  the m i ~ m u ~  may be n a ~ o w ~  and the location of the 
~ ~ r n u r n  determined to the required accuracy. This procedure is i l lu~a ted  
graphically in Fig. 9.4 where the lengths of the line segments are given by 4. 

It is necessary to consider the means by which the location of the points b and 
c (and the points which divide the subsequent line segments) are to be determined. 
Specifically, it is necessary to determine the relative lengths A,/&, A.d;li.L,... etc. 
such that the algorithm functions efficiently. One choice for the relative segment 
lengths is 

i 
L1 

R 
-- --7  

i-i 

(9.4) 

for al1 i. This algorithm is called the goiden ratio search and it is a highly 
efficient method for minimizing a function (Pierre 1986). Another, somewhat 
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more sophisticated, method is to allow the ratio ,I,/&, to vary as a function of i as 

This method is referred to as the Fibonacci search. This procedure cannot be 
continued indefinitely as it will terminate for i = 2; i.e. F2/F, = 1. This must be 
taken into account in the initial choice of i. That is, the initial i must be chosen to 
be large enough to allow for enough iterations in order to obtain the location of the 
~~m~ to the desired accuracy. 

a b C d 

Fig. 9.3. An example of a unitnodal funotonflx) on the interval [a& 

It can be shown that the Fibonacci search is more efficient than the golden 
ratio searck that is, after a given number of iterations the range of possible x 
values for the l ~ a t i o n  of the ~ n i m ~  is smaller in the former case. It has been 
suggested that the F i ~ n a ~ j  search is the most ~ c i e n t  search  go^^. 
Although the proof of this assertion is not clear, it is clear that the Fibonacci search 
(as well as the golden ratio search) is an efficient method in many instances. 

A problem related to the above discussion deals with searching an ordered list 
of numbem far a known value (or the number closest to the known value). Such an 
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ZJ"' iteration 

n-1 n-2 

w -- dd iteration 

An-* n-3 

4'h iteration 

sth iteration 

possible range of x 
after 5 iterations -u 

Fig. 9.4. Illustration of the search algorithm described in the text to locate the minimum in the function of 
Fig. 9.3. 

algorithm allows for a value to be inserted into an ordered list in the proper 
location, or equivalently, for an unordered list to be ordered by inserting each term 
in its correct place. A straightforward method of searching a list for the purpose of 
inserting a new term is to divide the list into half and to compare the new term 
with the value in the middle of the list. Depending on whether the new term is 
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larger or smaller than the value from the list, one or the other half of the list is 
divided into half and the procedure is repeated. This is continued until the proper 
location is found. This type of search is referred to as a binomial search. The 
golden ratio search divides the list into portions with relative numbers of terns 
given by z. In certain cases this method is more efficient than the common 
binomi~ search. The use of these methods in the development of computer codes 
can deal, not only with the ordering of lists of numbers, but also with ~ p ~ ~ t i z ~ ~ g  
and the location of items in lists of names, addresses or other records and, as such, 
have numerous and important applications. 
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CHAPTER 10 

C O M M E N S U ~ T E  AND ~ C O M ~ N ~ U ~ T E  PROJECTIONS 

In Chapter 5 the distinction between a periodic sequence as in Eq. (5.17) and a 
quasiperiodic sequence as in Eq. (5.16) was discussed. The sequences given in 
these equations may be displayed in a one dimensional graphical form by 
representing an A by a Iong line segment and a b by a shorter line segment as 
illustraM in Fig. 10.1. If a set of points is used to divide a line into long and short 
segments in either a periodic arrangement or in a quasiperiodic arrangement then 
these points form either a periodic or q ~ i ~ r i o ~ c  array (sometimes called a 
lattice). Thus Figs. 10. la and 10. Ib may be referred to as one dimensional periodic 
and q ~ i ~ ~ ~ c  lattices, respectively. The simplest kind of periodic array in one 
~ m e ~ ~ o n  is a sequence of evenly spaced points as shown in Fig. 10.2a. This may 
be viewed as a sequence of h e  sejpents of equal length. 

One dimensional problems often have two or three dimensional analogues. In 
the case of a periodic array, the simplest two dimensional analogue is the array or 
lattice of points described by the vertices of an arrangement of squares as shown in 

- -  - -  
L - s -  L -  L - s -  L - s -  L - )  

Fig+ 10.1. (8.) A periodic arrangement of long and short line segments in one dimension and (b) a 
quasiperiodic arrangement of long and short line segments in one dimension. Compare with the 
sequences given in Eqs. (5.17) and (5.16), respectively. 

87 
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Fig. 10.2. (a) One dimensional periodic array formed from a single cell type (line segment) and (b) two 
dimensional periodic array formed from a single cell type (square). 

Fig. 10.2b. This lattice may be extended indefinitely in all (two) dimensions by 
adding more squares to the array. The method of adding more squares is fairly 
obvious. New squares are created by translating previous squares by an integral 
number of edge lengths in directions which are parallel to the edges of the square 
This process can be repeated indefinitely to produce an infinite square lattice. This 
is analogous to the discussion in Chapter 5 concerning the generation of an infinite 
periodic sequence by the repetition of a basic sequence unit. This property of 
periodic sequences or arrays is referred to as translational symmetry. 

More complex periodic lattices in two dimensions can be formed and many of 
these are discussed in further detail in Chapter 11. As well, three dimensional 
periodic arrays are also possible. The simplest type of structure is based on the 
points formed by the vertices of an array of cubes. Again more complex structures 
are also possible, and Chapter 12 describes some of these. 

A quasiperiodic sequence in one dimension cannot be generated using only a 
single length of line segment; at least two different lengths are needed. The idea of 
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a quasiperiodic lattice (sometimes called a quasilattice) in two or three dimensions 
is somewhat more obscure than in the one dimensional case. Clearly more than 
one type of structural unit or cell must be used to produce a quasiperiodic array, 
just as more than one kind of unit (i.e. rabbit or line segment) is needed in one 
dimension. It is not obvious, however, whether two Merent cells will be d c i e n t  
or how to go about constructing such an array. It may seem that certain rules for 
constructing a quasiperiodic array in two or three dimensions which are analogous 
to the rabbit breeding rule used to generate the one dimensional array would be 
needed. This approach is possible, although not as straightforward as in the one 
dimensional case, and will be discussed in detail in Chapter 11. Another approach 
involves the so-called cut and projection method. This method is the topic of the 
present chapter although here the discussion will concentrate on the application of 
this method for generating one dimensional structures and extensions to higher 
dimensions will be dealt with later. The basic principles of this method are as 
follow. 

A two dimensional periodic lattice is constructed as shown in Fig. 10.3. In this 

Fig. 10.3. Cut and projection fiom two dimensions to one dimension with a cut angle with a rational tangent 
(tan 0 = 112). This is the so-called commensurate cut and projection which yields the periodic 
array as shown in Fig. 10.h The cut line is shown by the solid line and the band is defmed by 
the broken line. 
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case the lattice is constructed from squares, although the same methods may be 
applied to any periodic array. A cut line is constructed which intersects the two 
dimensional lattice as shown in the figure. A band is constructed on one side of the 
cut line which includes the lattice points nearest to the line. These points are 
projected onto the line by constructing a line through the lattice point which is 
perpendicular to the cut line. This procedure will yield an array of points on the cut 
line which are formed by the intersections of the projection lines as shown in 
Fig.lO.3. The line segments which are created by this procedure are either long (L  
in the figure) or short (s in the figure). These long and short segments form an 
array and the details of the array are determined by the angle, 8, which the cut line 
makes with the edges of the squares in the two dimensional lattice. In the example 
shown in Fig. 10.3 the cut line is characterized by an angle with tan B = 1/2. It is 
significant that the tangent of the cut angle in th~s example is a rational number 
and the procedure described here is referred to as a commensurate cut and 
projection. A commensurate cut and projection from a periodic array will yield a 
periodic array in a lower dimension. In the present example the cut and projection 
from the two dimensional square lattice will yield a periodic array in one 
dimension. In fact close examination of the sequence of L and s segments formed 
on the cut line in Fig. 10.3 will reveal that the arrangement of L and s is identical 
to the arrangement of A and b in Eq. (5.17) and the arrangement of long and short 
line segments in Fig. 10.la. It is of relevance to note that the tangent of the cut 
angle in this example is 1/2. This is the characteristic of the fraction of the line 
segments which are long, i.e. the ratio of the number of long segments to the total 
number of segments is 1/2. 

Changing the cut angle will result in different arrangements of long and short 
line segments in the projected sequence on the cut line. As long as the tangent of 
the cut angle is a rational number, that is the ratio of two integers, then the ratio of 
the number of long and short line segments in the sequence will be a rational 
number and the resulting pattern will be periodic. However, if the tangent of the 
cut angle is an irrational number then the cut is said to be incommensurate and the 
ratio of the long to short line segments in the projected sequence will also be an 
irrational number. Clearly in this case the sequence cannot be periodic as the true 
ratio of long to short segments can only be exhibited for an infinite sequence. An 
example of this type of cut and projection is illustrated in Fig. 10.4. A cut angle 
with a tangent which is related to the golden ratio is of most relevance to the 
present discussion and the example shown in the figure is for the case tan 0 = l/z. 
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As seen in the figure, the sequence of long and short line segments as projected 
onto the cut line is given by 

LSLLSLSLLSLLS. .. . (10.1) 

It is easy to see that this is identical to the quasiperiodic sequence given for the 
adult and baby rabbits in Eq. (5.16). On the basis of the discussion above for the 
commensurate projection, it is expected that the ratio of the number of long 
segments to the total number of segments should be llz. This is the ratio which is 
charact@ristic of the Fibonacci sequence and it is, therefore, not surprising that the 

Fig. 10.4. cllt and projection tiom 2 d w i o n s  to one dimemion with a cut angle with an irdhnal tangent 
(tan 0 = lh). This is the so-called i n m m r a t e  cut and projection which yields the 
quasiperiodic array as shown in Fig. 10.lb. The cut h e  is shown by the solid line and the band 
is &fined by the broken line. 

arrangement of long and short line segments which results fiom a cut and 
p r o j ~ o n  at an angle with tan B = 117 would yield this kind of q ~ i ~ r i o d i c  
sequence. It can aim be shown from a simple geometric analysis of the problem 
that the relative lengths of the long and short segments on the cut line are in the 
ratio 7 : 1. As the sequence of long and short line segments displayed by the 
projection of lattice points onto the cut line is characteristic of a Fibonacci 
sequence the resulting sequence of points in one dimension is generally referred to 
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as a Fibonacci lattice. This concept can be extended to two or three dimensions 
and will be discussed further in the next two chapters. 

The idea of rational approximants, as discussed in Chapter 7, can be nicely 
demonstrated by the use of the cut and projection method. It is clear that the ratio 
of successive Fibonacci numbers F,,+,/F, approaches the golden ratio in the limit of 
large n. It is similarly apparent that the ratio F,JFn+, should approach 1/r in the 
limit of large n. In the above examples cut angles with tangents which are 
representative of two possible ratios of Fibonacci numbers have been presented; in 
one case 112 = F21F3 and 112 = Fn/F;tcl in the limit of n -+ GO. Values of tan B 
which are equal to other ratios of F i ~ n a c c i  n u m ~ r s  can also be considered. Table 
10.1 gives some examples. Each cut and projectian will yield a characteristic 
sequence of long and short line segments. In the case of the projection at a cut 
angle with tan B = 112 the sequence was seen to consist of the elements LsLsLs ..., 
or a repetition of the basic unit or cell Ls. It is easy to see that a cut at an angle 
with tan 8 = 111 (or a cut angle of 45') will yield projected line segments on the cut 
line which are all the same length. This is represented by the sequence LLLL ... or 
a repetition of the basic cell L. Table 10.1 shows the basic cell which is obtained 
(as well as its length) for cut and projections at angles with tangents equal to other 
ratios of Fibonacci numbers. It is seen that the basic cell is a Fibonacci sequence in 
each case with a length that increases (as the sequence of Fibonacci n u m ~ r s ~  as 
the value of tan 8 is given by the incieasing i ti on^ ~ p p r o ~ m ~ t s  of the inverse of 

Table 10.1. Sequences of long and short line segments produced by the cut and projection method %om two 
dimensions to one dimension for cut angles whose tangents are ratios of successive Fibonacci 
numbers, F,iF,,+, 

tan 8= F,LF,,+, basic cell cell length n 
. - ~~~- __ ~~ 

1 1/1 L 1 
2 112 LS 2 
3 213 LSL 3 
4 315 LSLLS 5 
5 518 LsLLsLsL 8 
6 8/13 LSLLSLSLLSLLS 13 
7 13/21 LsLLsLsLLsLLsLsLLsLsL 21 
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the golden ratio, l/r. In the limit of n -+ 00, the rational approximant approaches 
the true ination& value of 112 and the basic cell becomes the infinite ~ ~ i ~ r i ~ c  
Fibonacci sequence. 

The Fibonacci sequence produd by the cut and projection at an angle with 
tan 8 = ltz can be used to demonstrate the concept of deflation (or inflation). The 
simplest way of demonstrating this behavior is by analogy with the deflation of the 
Fibonacci rabbit sequence described in Chapter 5. Since the sequence shown in 
Fig. 10.lb is identical to the sequence of Fibonacci rabbits of Fig. 5.6 if adult 
rabbits (A) are represented by long line segments (L) and baby rabbits (b)  are 
represented by short line segments (s), then a rescaling using the same rules as was 
applied to the deflation of the Fibonacci rabbit sequence should rescale the one 
dimensional Fibonacci lattice. In the present case these deflation rules are 
expressed as follows: 

(1) remove all isolated L’s from the sequence 
(2) replace all LL’s by s’s and 
(3) replace all original s’s by L’s. 

This pmedure is shown in Fig. 10.5. A rescaling of the one dimensional 
Fibonacci lattice to shorter lengths, a procedure which is referred to as inflation (by 
analogy with the discussion in Chapter 3), can also be accomplished. This is 
shown in Fig. 10.6. Each long line segment is divided into two segments with 
length ratios of ~1 with the longer segment on the left. It is easy to see that the 
length of the longer of these newly formed segments in the same as the length of 
the originaS short segment. This ~nflation process is, therefore equivalent to the 
rescaling procedure; 

(1) replace all s by L 
(2) replace all L by Ls. 

This procedure can be applied to the Fibonacci rabbit sequence as well by 
substituting A for L and b for s. For the one dimensional Fibonacci lattice this 
procedure is illustrated in Fig. 10.6. Since the ratio of the number of long line 
segments to totdl line segments in a Fibonacci lattice must be l/r, then this ratio 
should not change during rescaling. It is easy to show that this is the case. The 
number of original long segments is related to the number of original short 
~ g m e n t s  by 

N ,  = ZN, . (10.2) 
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The number of new long segments is given by the number of original short 
segments, N' plus the number of new long segments, which is equal to the number 
of original long segments; 

NL'=  N ,  + N ,  (10.3) 

and from m. (10.2) 

N ' ,  = N s ( l + r )  . (10,4) 

The number of new short line segments is merely the number of original tong 
segments; 

N,'= N L  . (10.5) 

Equations (10.4) and (10.5), therefore, give the ratio of new long to new short 
segments as 

(10.6) 

This demonstrates that the rescaled Fibonacci lattice is also a valid Fibonacci 
lattice. This procedure, as shown in Fig. 10.6, can be repeated ~nd~f i~ te ly .  

The properties described here for the one dimensional Fibonacci lattice will be 
extended to higher dimensions in the next two chapters. 

Fig. 10.5. One dimensional Fibonacci lattice; (a) original lattice and (b) lattice after one deflation as 
described in the text. 
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Fig. 10.6, One dimensional Fibonacci lattice; (a) original lattice, fb) after one infiation and (c) after two 
inf ia t iOnS.  
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CEAPTER 11 

PENROSE T m G S  

The ideas concerning the generation of q ~ ~ ~ r i ~ ~ c  structures as described 
in the previous chapter may be extended to higher dimensions. In the present 
chapter the concept of a two ~ e n s i o ~  Fibonacci lattice is explored. ~ s t o r i c ~ l y  
speaking, the first detailed work on two dimensional Fibonacci lattices was 
published in 1974 by Roger Penrose (1974), although certain ideas concerning 
these types of structures have been in existence for many years. It was, however, 
Penrose who first studied and properly appreciated the mathematical concepts 
present in these two dimensional Fibonacci lattices and it is, therefore, appropriate 
that they are generally referred to as Penrose tilings. In general the word tiling is 
used to describe a structure which is comprised of one or more types of cells or 
tiles which can be used to fill space. It is most common to think of a tiling in two 
dimensions, such as the arrangement of floor tiles, although in a mat he ma ti^ 
sense the concept is valid in any number of dimensions. In this case the tiling 
consists of a finite number of Merent two ~ m e ~ i o ~  figures which can be used 
to cover a plane without overlap. As expected, the Penrose tilings exhibit 
quasiperiodic rather than periodic order. There is extensive literature on both 
periodic and quasiperiodic tilings and many of the properties of these structures 
are beyond the scope of the present book and the present discussion will cover only 
those topics which are of relevance to the golden ratio. However, a basic 
introduction to the mathematics of tilings may be found in Grundbaum and 
Shepherd (1987) and in Dunlap (1990). 

Pahaps the most straightforward method of constructing a Penrose tiling is by 
analogy with the cut and projection method described in the previous chapter for 
the pen on of a one d i m e n s i o ~  Fibonacci lattice. An i n c o ~ e n s u ~ t e  cut 
and projection from a two ~ ~ e n s j o ~  periodic (e.g. square} lattice at a cut angle 
with a tangent related to the golden ratio will yield a one dimensional Fibonacci 
lattice. Analogously an incommensurate cut and projection from a four 

97 
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Fig. 11.1.  A two dimensional Penrose tiiing based on oblate (fat) and prolate (thin) rhombuses. The circle 
indicates a point of local fivefold rotational symmetry and the heavy lines indicate the ten 
different tile edge directions. These points are discussed in the next chapter. 

dimensional periodic (e.g. hypercubic) lattice at a cut angle with a tangent related 
to the golden ratio will yield a two dimensional Fibonacci lattice which is usually 
referred to as a two dimensional Penrose tiling. In this case the cut line is actually 
a plane and is sometimes referred to as a hyperplane for reasons which will 
become apparent in the next chapter, It is not possible to draw (in two 
dimensions) the four dimensional hypercubic structure but it is possible to 
analytically compute and draw the resulting two dimensional Penrose tiling and 
this is shown in Fig. 11.1. There are several interesting properties of the two 
dimensional Penrose tiling shown in the figure. 

(1) The tiling is made up of two different tile shapes (or cells); one is an oblate (or 
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fat) rhombus and the other a prolate (or thin) rhombus. The edges of these two 
tiles are all of the same length and the angular relationships are illustrated in 
Fig. 11.2. 

(2) Certain points in the tiling are surrounded by a star-like arrangement of 
rhombuses and possess fivefold point symmetry. This feature is referred to as 
rotational symmetry. 

(3) The edges of the rhombuses are oriented in a number of well defined directions 
(in this case there are ten different directions). This feature is referred to as 
bond orientational order. 

(4) The tiling cannot be extended by ~ n s l a t i n g  and copying any section of the 
tiling (as is the case for the two ~ m e n s i o ~  square lattice in Fig. 10.2b). 

Fig. 1 1.2. (a) Oblate rhombus and (b) prolate rhombus from the Penrose tiling of Fig. 1 1 .1  showing the 
angle and edge length relationships. 

These features are characteristic of q ~ s i ~ r i o d i c  (sometimes called aperiodic) 
order in two ~ m ~ n s i o n s .  This situation is completely analogous to the one 
~ m e ~ i o ~  case of the Fibonacci sequence as shown in Fig. 5.6 or Fig. 10. Ib. In 
particular some of the similarities between the one and two dimensional cases 
which are of particular importance are as follows: 

(1) The ratio of the numbers of the two different tile shapes as the size of the tiling 
goes to infinity is related to the golden ratio and is given by 
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(11.1) 

(2) The quasiperiodic nature of the tiling is not a direct result of the tile shapes but 
is a consequence of the rules for arranging the tiles. Thus, as in the case of 
Fig. lO.la, the two tile shapes can be arranged in a periodic lattice as well. 
For the two dimensional rhombuses of Fig. 1 I .  1, one example of a periodic 
tiling which can be constructed is shown in Fig. 11.3. 

-- --I 
Noblare ' protale 

Fig. 1.3. A two dimensional periodic tiling (or lattice) comprised of the oblate and profate rhon 
Fig. 11.1. 

ises c 

The above obse~ations clearly illustrate the relations~p of the two 
~ m e n s ~ o n ~  Penrose tiling and the golden ratio. This relations~p i s  also apparent 
from the geometry of the Penrose rhombuses themselves. As Fig. 1 1.4 shows each 
rhombus can be easily dissected into two golden triangles. This feature will be 
discussed further below in the context of deflation operations. 

It was seen that the one dimensional Fibonacci lattice could be generated in 
two ways; by the incommensurate cut and projection method and by appropriate 
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generation iuies (in this case the rabbit breeding rules). In a more general sense 
the rules used to generate the Fibonacci sequence can be referred to as matching 
rules. An analogy of the gene~tion of the Fibonacci lattice by ~ ~ ~ n g  rules also 
exists for the two ~ ~ ~ i o ~  Penrose tiling. In fact it was through the use of 
matching rules (rather than by the cut and projection method) than Penrose first 

Fig. 11.4. (a) Dissection of the oblate Penrose rhombus into two obtuse golden triangles (golden gnomons) 
and (b) the dissection of the prolate Penrose rhombus into two acute golden triangles. 

Fig. 11.5. Matding rules in the form of keys on the (a) oblate and (b) p l a t e  rhombuses of the Penrose 
tiiingiaFig. 11.1. 
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proposed the existence of the two dimensional analogy to the Fibonacci sequence. 
The matching rules for the two dimensional tiling can be expressed in the form of 
keys on the tiles; rather like the shape of the pieces of a jigsaw puzzle. For the 
tiling of Fig. 11.1 the matching rules are illustrated in Fig. 11.5. These keys will 
allow the tiles to be arranged as they are in Fig. 11.1 but not as they are in Fig. 
11.3, The use of the matching rules for the placement of the tiles is a necessary 
condition for the generation of a proper quasiperiodic tiling in two dimensions 
(that is a correct two dimensional analog of the Fibonacci lattice in one 
dimension). However, the use of the matching rules, in itself, is not suflicient to 
guarantee that the resulting tiling will be a correct Fibonacci lattice. Thus the 
construction of the two dimensional Fibonacci lattice is not so straightforward as 
the one dimensional case which could be produced precisely from the rabbit 
breeding rules. 

The Penrose tiling shown in Fig. 11.1 is not the only two ~ ~ e ~ i o n ~  
q ~ s i ~ r i o d i c  lattice which exhibits the properties described above. In fact, the 
first quasiperiodic tiling proposed by Penrose is shown in Fig. 11.6. This earlier 
tiling is distinct from those discussed previously in this book as it is based on four 
tile shapes instead of two. However, there are certain similarities between these 
different tilings; i.e. the existence of fivefold rotational symmetry and a 
construction based on matching rules, 

Another quasiperiodic tiling of interest is illustrated in Fig. 11,7. The tile 
shapes here are referred to as darts and kites. The occurrence of fivefold symmetry 
at specific points in the structure is obvious in the figure. It can be shown that 
these two tile shapes occur in the ratio 

(11.2) -- --? . N,, 

Ndarts 

The matching rules for these tiles which are necessary for the construction of a 
proper quasiperiodic tiling are illustrated in Fig. 11.8. Again, as in the case of the 
tiling based on rhombuses, the matching rules are a necessary but not s-cient 
condition to yield a true two dimensional Fibonacci lattice. It is not surprising that 
the tiles themselves used in the production of this tiling exhibit properties which 
are related to the golden ratio. In fact it is readily seen from the geometry of the 
tiles as shown in Fig. €1.9, that both tile shapes can be dissected into golden 
triangles. 
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Fig. 11.6. A two d ~ ~ i o n a 1  Penrose tiling based on four tile shapes ('pentagons, rhombuses, three and five 
pointed stars) a8 suggested by Penrose. Adapted fhrn Penrase (I 974). 

The idea of rescaling a Fibonacci lattice in two dimensions (i.e. deflation) 
which has been discussed at length with respect to the one ~mensional Fibonacci 
lattice, can be demonstrated here as well. In fact, this property follows directly 
from the fact that the tilings utilized in these two dimensional Fibonacci lattices 
are composed of golden triangles and a rescaling of the golden triangles by a factor 
of the golden ratio has been shown in Fig. 3.3. 

A simple example of rescaling the tiling of Fig. 11.1 is illustrated in Fig. 
11.10. This procedure may be repeated inde~ni~ly,  scaling the tiling to increasing 
or decreasing tile size, while still r n ~ n ~ ~ n g  the correct ratio of oblate to prolate 
rhombu~s to produce a two d imens io~ Fibonacci lattice. Improper tilings are 
characterized by tiling ~ ~ s t u ~ e s .  Although these mistakes are not necessarily 
obvious i ~ ~ i a r e l y  they will result in an inconsiste~~ in the tiling which will 
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Pig. I 1.7. Two dimensional Penrose tiling comprised of darts and kites. 

(a) (3) 

Fig. 11.8. Matching rules in the forms of keys on the (a) darts and (b) kites of the tiling in Fig. 11.7. 
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72 

Fig. i 1.9. Dissection of darts and kites, (a) and (b), respectively, into golden triangles. Angular and length 
relationships are illustrated. 

Fig. 11.10. Quasiperiodic tiling in two dimensions illustrating the application of a deflation operation. 
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eventually become evident if the tiling is extended. This will create a s i ~ t i o n  
where a tile cannot be added to the lattice in such a way as to be consistent with 
the matching rules. Following an analogy with the one dimensional case, tiling 
mistakes, as given in Table 5.6, will become obvious if the relevant section of the 
tiling is deflated repeatedly. 

There are several historical aspects of two dimensional Fibonacci tilings 
which are of particular interest. Although it was Roger Penrose who first 
appreciated the mathematical importance of quasiperiodic tilings, similar patterns 
have been considered previously. A few examples are given. 

Fig. 1 1.1 1. Titing with fivefold symmehy designed by Kepler (1 619). 
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Johannes Kepler (1571-1630) had an interest in a variety of fields of natural 
science. A topic which he investigated in considerable depth concerned the 
relationship of Merent geometrical forms. Part of this study dealt with the 
construction of two dimensional tilings. One tiling presented by Kepler in his 
monograph of 16 19, Hurmonices Mundi (Kepler 16 19) is illustrated in Fig. 1 1.11. 
This tiling is composed of four tile shapes, regular pentagons, pentagrams (five 
pointed stars), decagons and double decagons and shows certain similarities with 
the quasiperiodic tiling in Fig. 11.6. In fact it can be shown that the tiling of Fig. 
11.11 may be extended indefinitely to produce a proper quasiperiodic tiling. 

Prior to Kepler's investigations, the German artist and scientist Albrecht Diirer 
(1471-1528) considered tilings which are of relevance to the present discussion. 
Fig. 11.12 shows some examples of tiling published by Diirer around 1525 (Diirer 
1525). These tilings illustrate Diirer's interest in the regular pentagon as well as 
his recognition that pentagons and rhombuses could be arranged periodically as in 
Fig. 11.12a or quasiperiodically as in Fig. 11.12b. A detailed analysis of the 
contribution of Diirer to an understanding of fivefold symmetry has been given by 
Crowe (1992). 

Fig. 11.12. Tilings with fivefold symmetry designed by DUrer (1525) which exhibit (a) periodic order and 
@) no periodic order. 
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Fig. 11.13. Portions of tilings comprised of darts and kites designed by Abu'l Wafa'al Buzjani 
(c. 1180). From Chorbachi and Loeb (1992), copyright World Scientific Publishing. 
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Perhaps the earliest consideration of tiling which exhibits some properties of 
quasiperiodicity is in the work of the 12th century Persian mathematician Abu'l 
Wa€a'al Buzjani (c. 1180) who considered the properties of figures with fivefold 
symmetry. Figure 11.13 illustrates a construction reported by Buzjani. The 
relationship of darts and kites and their arrangement into figures with fivefold 
symmetry is clearly evident in this figure and the relationship with quasiperiodic 
tilings is apparent by a comparison with Fig. 11.7. A detailed analysis of ancient 
Persian work related to fivefold symmetry has been given by Chorbachi and Loeb 
(1 992). 

The above discussion illustrates the geometric constituent necessary to 
produce a quasiperiodic tiling in two dimensions have been considered since 
antiquity. However, it was not till the work of Penrose in the early 1970's, that an 
understanding of these tiling in the sense of two dimensional Fibonacci lattices 
appeared. This led to an extension of these ideas to three dimensions and an 
understanding of the structure of quasicrystals as discussed in the next chapter. 
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CHAPTER 12 

~ U ~ I C R Y S T ~ L ~ G ~ ~ Y  

An extension of the concepts discussed in the previous chapter to three 
dimensions describes the unique structure of a newly discovered class of metallic 
materials. Before discussing the structure of these novet materials, it is usefitl to 
consider the models for describing the microscopic structm of atoms in 
conven~onal materials. 

In a crystalline material the atom are arranged on a lattice. This is, as has 
been discussed in Chapter 10, a periodic array of cells of a single type. The 
fundamentaI cell used for generating the lattice is called the unit cell. In most 
crystals this is a three dimensional structure and the simplest lattice is an 
arrangement of cubes. For purposes of illustrating some basic crystal properties it 
is convenient to consider some two dimensional examples. In two dimensions the 
simplest lattice is a square lattice as shown in Fig. 12.1. The structure is formed 
by translating and copying the basic unit cell, the square in order to fill all of two 
dimensionid space. This lattice is, therefore, called a space $iling structure. 
Space Blling structures in two dimensions may be generated from other cell 
shapes. Some examples of this are ~ 1 1 ~ ~  in Fig. 12.1. In order to form an 
actual crystal the atoms must be placed on the lattice. The way in which this is 
done is died  the basis. The simplest basis consists of a single type atom placed at 
each lattice point as shown in Fig. 12.2a. It is possible as well to produce more 
complex structures as shown in Fig. 12.2b where more than a single atom is 
associated with each lattice point. This construction may be expressed as 

LATTICE + BASIS = CRYSTAL . (12.1) 

The lattice and the crystal related to it have some basic symmetry properties. 
These are 
(1) ~ i a t i o ~  ~ e t r y  and 
(2) rotational ~ e ~ .  

111 
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Fig. 12.1. Some examples of lattices (space filling structures) in two dimensions consisting of cells which 
are (a) squares, @) rectangles, (c) parallelograms and (d) hexagons. 

The first property is a direct result of the manner in which the lattice was 
generated. The second property results from the basic symmetry properties of the 
unit cell. For example the square may be rotated by 90', MOO, 270' or 360" 
without changing its appearance. The same is true of the square lattice (in two 
dimensions). Thus the square lattice is said to possess fourfold rotational 
symmetry (since it can be rotated by multiples of 36014 degrees). The square lattice 
also has twofold symmetry since rotations of 360/2 degrees leave its appearance 
unchanged. It is a general feature that lattices with n-fold symmetry also have n/2- 
fold symmetry when n is even. An inspection of the lattices shown in Fig. 12.1 
shows the existence of two twofold symmetry (all lattices), threefold symmetry 
(hexagonal lattice), fourfold symmetry (square lattice) and sixfold symmetry 
(hexagonal lattice). Although these lattices are not the only ones possible in two 
dimensions, the symmetries shown are the only ones which are possible (i.e. 
allowed) in two dimensions. 

Since the golden ratio has been shown to be related to geometric figures which 
exhibit fivefold symmetry, it is interesting to consider the possibility of a lattice 
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0) 

lattice + basis = crystal 

Fig. 12.2. Crystals in two dimensions formed by a lattice and a basis; (a) square lattice with single atom 
basis and @) rectangular lattice with two atom basis. 

with fivefold symmetry by constructing (or trying to construct) a lattice from cells 
with fivefold symmetry. Figure 12.3 shows that the construction of a space filling 
structure comprised of regular pentagons is not possible. Traditionally this 
demonstration has been taken as evidence that crystallographic fivefold symmetry 
is not allowed. However, it has been shown in the previous chapter that the two 
dimensional Penrose tiling has certain features which are characteristic of fivefold 
symmetry. Figure 11.1, for example, shows that points exist within the 
quasilattice which have local fivefold rotational symmetry. This structure cannot 
be produced by translating and reproducing some group of cells. The fact that the 
correct ratio of tile types is the golden ratio, an irrational number, indicates that 
this is the case. The quasilattice can, therefore, be said to possess fivefold 
rotational symmetry but no translational symmetry. 

An extension of these ideas to three dimensions is possible. The simplest 
three dimensional lattice consists of cubic unit cells. This lattice (and the 
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r 

Fig. 12.3. Attempt to construct a two dimensional lattice from regular pentagons showing that adjacent cells 
overlap. 

associated crystal) will have translational symmetry and the rotational symmetry of 
the cube. Although fourfold symmetry is perhaps the most apparent symmetry of 
the cube it is not the only symmetry present. The cube shows fourfold (and also 
twofold) symmetry when viewed along a direction perpendicular to a face. When 
viewed along an edge direction the cube exhibits only twofold symmetry and when 
viewed along a vertex direction the cube shows threefold symmetry. These 
properties are shown in Fig. 12.4. 

A similar consideration of the symmetry characteristics of the other Platonic 
solids is of interest at this point. These are described in Table 12.1. It is obvious 
from these data that the edges of solids have twofold symmetry. This is because an 
edge can only be formed from the intersection of two faces. The relationship of the 
symmetry characteristics of the edges and faces to the values of m (the number of 
faces per vertex) and n (the number of edges per face) given in Table 4.1 is clear. 
The solids which exhibit fivefold symmetry, i.e. the dodecahedron and the 
icosahedron, can be shown to be unsuitable for the formation of a space filling 
structure (i.e. lattice) in three dimensions. This has traditionally been used as an 
argument against the existence of three dimensional fivefold symmetry. 
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Fig. 12.4. Symmetry characteristics of the cube, (a) fourfold symmetry axis about the face direction, (b) 
twofold symmetry axis about the edge direction and (c) threefold symmetry axis about the vertex 
direction. 

Table 12.1. Symmetry characteristics of the Platonic solids. The numbers refer to the rotational symmetry of 
the solid as viewed from different directions. 

solid vertex face edge 

tetrahedron 3 3 2 
cube 3 4 2 

octahedron 4 3 2 
dodecahedron 3 5 2 
icosahedron 5 3 2 

Not all solid materials exhibit crystalline order. Amorphous, or glassy, 
materials have been known for many years. These materials have atoms which are 
arranged randomly within the material. The distinction between a ctystalline 
material and an amorphous material is rather like the difference between stacking 
marbles neatly in a box and throwing them in at random. Because the atoms in an 
amorphous material are randomly arranged there is no clearly defined unit cell and 
hence, no translational or rotational symmetry. 

A natural extension of the previous discussion concerning Penrose tilings is to 
consider the possibilities of real three dimensional materials with quasiperiodic 
order (Penrose 1989). This is particularly interesting as the two dimensional 
Penrose tiling discussed in Chapter 11 exhibited some aspects of fivefold 
symmetry. In fact since the work by Penrose in the early 1970's there has been 
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speculation concerning materials with quasiperiodic order. These materials are 
known as quasicrystals and experimental evidence for their existence was 
presented in 1984. The structure of three dimensional quasicrystals may be 
described on the basis of a three dimensional quasilattice which may be generated 
by an incommensurate cut and projection from a periodic lattice in six dimensions 
to three dimensions. The simplest case would be a cut and projection from a six 
dimensional h ~ r c u b i c  structure onto a three dimensional space (called a three 
dimensional hyperplane), 

If the tangent of the irrational cut angle is a power of the golden ratio then the 
resulting quasiperiodic three dimensional structure will have certain characteristics 
which are analogous to the properties of the two dimensional Penrose tiling 
previously discussed. These include; 

(1) the existence of two rhombohedral cells (or three dimensional tiles) as 

(2) a ratio of the number of the two tile shapes which is the golden ratio 
(3) the formation of localized points in space which are formed by the clusters of 

(4) the existence of quasiperiodic order. 

The features listed above are consistent with the true three dimensional 
q u a s i ~ r i o d i c i ~  characteristic of a three dimensional Penrose tiling or Fibonacci 
lattice. The tiles, or cells in the three dimensional case are rhombohedra as shown 
in Fig, 12.5. Each rhombohedron has six rhombuses as shown in Fig. 12.6 as 
faces. This two dimensional figure is referred to as the golden rhombus and has 
pe~nd icu la r  diagonals which have a ratio of lengths of 1 : r. The ~ ~ e ~ ~ n t  of 
the rhombuses determines the geometry of the resulting rhombohedral tiles. The 
oblate rhombohedron is formed in such a way that two opposite vertices are formed 
by the intersection of three rhombuses at their obtuse angles. The prolate 
rhombohedron is formed in such a way that two opposite vertices are formed by the 
intersection of three rhombuses at their acute angles. 

In the same way that a two dimensional Penrose tiling may be constructed 
from rhombuses using appropriate matching rules, similar rules in the form of keys 
on the faces of the rhombohedral tiles may be used to construct a three dimensional 
Penrose tiling. Again the keys are a necessary but not sufficient condition for 
generating a correct Penrose tiling. As in two dimensions, tiling mistakes prevent 
the quasiperiodic lattice from being extended indefi~tely and become apparent 
during deflation operations. 

i l l ~ ~ a t e d  in Fig. 12.5 

tiles which have icosahedral ~mmet ry  
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Fig. 12.J. Rhmbohedral cells formed by a cut and projection fiom six dimensions to three dimensions; (a) 
prolate hombohedron and (b) oblate rhombohedron. 

Fig. 12.6. The golden rhombus. 
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An inspe~ion of the clusters of r h o m b o h ~ a  in the three ~ m e n s i o ~  Penrose 
tiling will reveal the existence of Iocaf icosahedral rotational symmetry. Insight 
into the ~ m m e ~  of the three ~mensiona~ Penrose tifing can be gained from a 
consideration of the properties of the six dimensional hypercubic structure, In a 
three dimensional cubic structure the cube is formed by vectors along three 
orthogonal (or mutually perpendicular) axes. In a six dimensional space the 
hypercube is formed by vectors along six orthogonal axes. This construction is not 
possible in three dimensions. However, the construction of six equally spaced 
vectors in three dimensions will define the six principal directions for the 
icosahedron as illusuated in Fig. 12.7. Thus the symmetry ~ ~ ~ a c ~ e ~ s t ~ c s  of %be six 
~mensional h ~ r c u b e  are similar to those of the three dimensional i ~ ~ ~ ~ n  
which is derived from it by the cut and projection method. It is of interest that the 
angle between adjacent vertex directions for the icosahedron is the apex angle of 

Fig. 12.7. Principal axes of the icosahedron defined by the directions &om the center to each of the vertices 
in the top half of the solid. The directions to the vertices in the lower half of the solid BT~: merely 
exbmions of the lines already show. 
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the golden rhombus, 63.435'. Thus the triangle formed between two icosahedron 
vertex directions and one icosahedron edge is precisely one half of the golden 
rhombus. 

A large number of materials are now known to possess a structure based on 
the three dimensional Penrose tiling and are commonly referred to as quasicrystals. 
As is the case with conventional crystalline materials, it is necessary to spec@ the 
arrangements of the atoms relative to the lattice points. In the case of 
quasicrystalline materials this is expressed as 

QUASILATTICE + DECORATION = QUASICRYSTAL . (12.2) 

This concept is the same as that expressed in Eq. (12.1) although the customary 
terminology is different. 

In actual quasicrystalline structures the atoms are most commonly placed at 
vertex points in the quasilattice or along lines between the vertices. Thus the 
edges of the rhombohedra in the three dimensional Penrose tiling define the 
directions of the chemical bonds between atoms. For this reason it is sometimes 
said that these materials exhibit bond orienfutionaf ordering. This can be readily 
seen in the two dimensional case by an inspection of the tiling in Fig. 1 1.1 where it 
is seen that precisely ten different rhombus edge directions are possible. 

In a manner analogous to the crystalline case, a quasicrystalline material 
exhibits rotational symmetry which is characteristic of the point symmetry of the 
quasilattice. In most quasicrystalline materials this symmetry is the symmetry of 
the icosahedron. These materials are, therefore, referred to as icosahedral 
quasicrystals. The symmetry characteristics of the icosahedron are observed along 
the vertex, face and edge directions as illustrated in Fig. 12.8. This figure shows 
the existence of five-, three- and twofold rotational symmetry along these 
directions, respectively. 

Probably the most straightfonvard method of observing the symmetry 
characteristics of a material is by means of a diffraction experiment using x-rays or 
electrons. The diffraction pattern obtained in this way will have the symmetry of 
the structure as viewed along the direction of the incident x-rays or electrons. 
Results of an electron diffraction experiment on quasicrystalline AlssCuzpe15 are 
shown in Fig. 12.9. These measurements have been made along directions which 
have been determined by the angular relationships of the vertex, face and edge 
directions of an icosahedron. The patterns observed in the figure demonstrate the 
five- three- aqd twofold symmetry expected along these different crystallographic 
directions. 
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Fig. 12.8. Symmetry characteristics of the icosahedron; (a) fivefold symmetry axis about the vertex 
direction, (b) threefold symmetry axis about the face direction and (c) twofold symmetry axis 
about the edge direction. 

The idea of rational approxim~ts is related to the formation of novel tilings. 
In the cut and projection from two dimensions to one dimension, a rational cut 
angle yields a periodic one dimensional lattice and an irrational cut angle yields a 
quasiperiodic lattice. Choosing a cut angle whose tangent is a rational 
appro~mant (or the inverse of a rational approximant) of the golden ratio will 
produce a periodic lattice which is comprised of portions of a Fibonacci lattice. 
This was demonstrated in Chapter 10. As the rational approximant becomes 
closer to the golden ratio, the portion of the Fibonacci sequence which repeats 
becomes larger. The same idea can be extended to two and three dimensional 
lattices. Clusters of tiles which are portions of the two or three dimensional 
Penrose tiling can be repeated to produce a tiling which overall is periodic, and 
therefore possesses translational symmetry, but which has local symmetry 
characteristic of the quasiperiodic structure. As the rational approximant defining 
the tangent of the cut angle becomes closer to the golden ratio the size of the unit 
cell becomes larger although some overall conventional (i.e. cubic) translational 
~ e t r y  is ma in~ned .  Such rational appro~man~s of q ~ s i c r y ~ l i n e  materials 
are observed in real systems and are d i s t i n ~ i s h ~  by the rational approximate 
defining the cut angle. Therefore, 1/1, 1/2, 2/3, 3/5, ... etc. rational approximants 
of the quasicrystalline material may exist. 
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Fig. 12.9. Electron dfiaction patterns of the icosahedral quasicrystal A1&u20pe15 showing (a) fivefold 
symmetry axis, (b) threefold symmetry axis and (c) twofold symmetry axis. 
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CHAPTER 13 

BIOLOGICAL APPLICATIONS 

The golden ratio plays a role in the growth of many biological systems. This 
is manifested in several distinct ways which can be related to the mathematical 
properties of the golden ratio which have been discussed in previous chapters. 
Three particular situations, as follows, will be discussed in this book; 

( 1) symmetry characteristics, 
(2) optimal spacing and 
(3) Fibonacci growth spirals. 

Biological symmetry 

Biological systems exhibit a wide variety of symmetry characteristics. In most 
cases the symmetry is only approximate as the growth of biological organisms is 
not perfect and this kind of symmetry is sometimes referred to as material 
symmetry. A number of organisms exhibit either two dimensional fivefold 
symmetry or three dimensional icosahedral symmetry. These systems have 
features with dimensions that are related to the golden ratio. In this chapter some 
of the more common organisms which show fivefold symmetry are described. 

Plants 

Among the higher plants, the flowering plants are those which display the 
most obvious fivefold symmetry. The flowering plants, Class Angiospermae, are 
from the phylum Pteropsida (which also includes the ferns, Class Gymnospermae). 
The flowering plants are divided into two subclasses; the Monocotyledonae and 
the Dicotyledonae (commonly referred to as Monocots and Dicots, respectively). 
The Monocots have flower petal arrangements with three-, six- or twelvefold 
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symmetxy; while the Dicots show four- or fivefoid symmetry. The fivefold 
symmetty which occurs may be either strictly rotational symmetry or both 
rotational and inversion symmetry, depending on the shape of the petals, ?)rpical 
examples of the fivefold symmetry which arises in the growth of flowers are 
illustrated in Fig. 13.1. 

Fig. 13.1. Flowers with fivefold symmetry; (a) rotational only [Tabernaemantana corymbosa] and (b) 
rotational plus inversion [Hippobroma longiflora]. From M .  Hargittai (1992), copyight World 
Scientific Publishing. 
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Animals 

In the animal ~ngdom, fivefold symmetry is most ~ m m o n  among the 
~ ~ ~ ~ ~ d e ~ f f ~ f f .  This p h y l ~  includes animals such as starfish, sea urchins and 
sand dollars and consists almost exclusively of animals which are aquatic. The 
phylum is divided into four classes, three of which, as described below, show some 
aspects of fivefold symmetry. 

The Class Crinoidea includes the crinoids and feather stars, the majority of 
which arc extinct and are only known firom the fossil record. Most organisms in 
this class exhibit fivefold symmetry, or in some cases tenfold symmetry. A typical 
example is illustrated in Fig. 13.2. 

Fig. 13.2. Blastoid [Penwarnires robusfus] from the Class Crinoidea showing fivefold symmeQy (a) side 
view and @) ventral view. 

The class Stelleroidea contains two subclasses, the Asteroidea or true starfish 
and the Ophiuroidea or brittle stars and their relatives. Fivefold symmetry is 
abundant in both of these subclasses and a typical example is shown in Fig. 13.3. 

Class Echinoidea is divided into two subclasses; Regularia and Irregularia. 
Many members of the Subclass Regulavia exhibit fivefold symmetry. These 
animals include the sea urchins and the sand dollars. Their tests ( ~ m m o ~ y ,  but 
not comtly, referred to as shells) frequently exhibit patterns which show fivefold 
symmetry as illustrated in Fig. 13.4. 
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Fig. 13.3. starfish [Asten'as sp.] e ~ i b i ~ ~ g  fivefold ~ ~ e ~ .  From Hartner (1979). 

Fig. 13.4. Test of the common sand dollar [ ~ c ~ ~ ~ u ~ a c ~ n j ~ ~  pamn] showing the fivefold symmetry pattern 
charaderistic ofthese animals. From Hartner (1979). 

Viruses 
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The viruses contain a proliferation of forms which show symmetry related to 
the icosahedron. A detailed discussion of the classification of viruses is beyond the 
scope of this book. However, the symmetry characteristics which are relevant to a 
discussion of the golden ratio are quite evident in the example shown in Fig. 13.5. 

Fig. 13.5. Ccrpsomer of a virus [Adenovirus] exhibiting icosahedral symmetry. The diagram shows the 
protein based structural units known as hexons (open circles) and pentons (solid circles and 
connecting lines>. 
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Optimal spacing 

The optimal spacing of points on the c i r ~ ~ e ~ n c e  of a circle has been 
discussed in Chapter 9. There it was shown that angles related to the golden ratio 
lead to the most uniform spacing of points. This principle is i r n ~ ~ t  to the 
growth of a number of plants. In many cases the arrangement of leaves on the stem 
of a plant is related to the optima1 spacing algorithms discussed in Chapter 9. It is 
advantageous for leaves to be positioned along the stem in such a manner that will 
optimize the exposure of each leaf to sun and rain. That is, if the stem is vertical 
and the leaves are viewed from above, it would be beneficial to avoid the situation 
where leaves are positioned directly above other leaves. An ideal arrangement is 
illustrated in Fig. 13.6. Here the growth angle is 2dr2 = 137.5077O. Recall from 

9 ’  

5 

Fig. 13.6. Optimal spacing of leaves on a stem with a p w t h  mgle of 2m’r (~adza~s) .  The numbem indicate 
the order of growth. 
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Chapter 9 that spacings related to r2 are equivalent to those related to r. In many 
cases the arrangement of leaves on a plant's stem is related to a rational 
approximant of the golden ratio; That is growth angles related to 29d2,2, where rn 
is the n'h rational approximant of r and is given by a ratio of Fibonacci numbers. 
Figure 13.7 shows a typical example of this type of growth. If a number of turns, 
nl , are taken by an arrangement of n2 leaves around the stem then the growth angle 
will be given by 2m1/n2. In the example shown in the figure nl = 3 and n2 = 8. 
Both these numbers are Fibonacci numbers, although not successive ones. It is 
straightforward, however, to show that 

(13.1) Fn m lim -- - ?  . 
Fn-nl 

2 V 
5 

6 

8 

Fig. 13.7. Spacing of leaves on a stem with a growth angle of 2rd(8/5) (radians). Compare with Fig. 13.6. 
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In the present example 8/3 is the fifth rational approximant of 2’ and it is clear 
that in the limit of large n, the situation shown in Fig. 13.6 is achieved. In fact, 
values of nl and n2 which are Fibonacci numbers are nearly universal among plants 
which show a regular arrangement of leaves. Typical m in Eq. (13.1) is 2 and the 
spacing is governed by a growth angle related to a rational approximant of r2. 

Fibonacci spirals 

The concept of Fibonacci spirals in growth patterns is an extension of the 
ideas described in the above section on optimal spacing. Many organisms show 
growth patterns which are in the form of spirals. In some cases the spiral nature of 
the growth is very apparent, as in the case of the shells of most gastropods (snails) 
and some other mollusks. In other cases the growth of an organism is in the form 
of discrete components which exhibit a spiral structure. Some examples of this 
type of structure are the scales on a pine cone or the surface of a pineapple. The 
golden ratio, or at least ratios of Fibonacci numbers are a common feature of the 
growth angles of these patterns. Some typical examples of Fibonacci spirals in the 
growth of different organisms are discussed below. 

Pinecones 

The pattern on the base of a typical pinecone is illustrated in Fig. 13.8. A 
spiral arrangement of the seed bearing scales is seen indicating a growth outward 
from the stem. Both clockwise and counterclockwise spirals can be seen in the 
figure. It is clear that the clockwise spiral pattern is tighter than the 
counterclockwise spiral pattern (pine cones of the opposite parity also exist). This 
indicates that the pattern of scales may be viewed in terms of the outward growth 
of a series of spirals. The numbers of clockwise and counterclockwise spirals are 
almost always successive Fibonacci numbers. In the example shown in the figure 
there are 13 and 8 clockwise and counterclockwise spirals, respectively. This 
property indicates that the growth angle of the scales in the pinecone is related to a 
rational approximant of the golden ratio; i.e. 13/8. 

Compound Flowers 

The heads of many flowers show a complex arrangement of seeds. The 
sunflower, as illustrated in Fig. 13.9, is a well known example. A spiral pattern 
consisting of both clockwise and counterclockwise spirals, similar to that displayed 
by pinecones, is seen in the figure. Typically the numbers of clockwise and 
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counterclockwise spirals are successive Fibonacci numbers and are dependent on 
the overall size of the flower and the individual seeds. A medium sized sunflower 
may have a ratio of clockwise to counterclockwise spirals which is 89/55 while a 
large sunflower would probably have 144/89. In some cases (Hoggatt 1969) a ratio 
of 123/76 has been observed, indicating a Lucus sunflower. These observations 
indicate a growth angle which is related to z or at least to a rational approximant 
of z. It is interesting to see how important the precise value of the growth angle is 
in determining the structure of a flower. This problem has been investigated in 
detail by Rivier et ul. (1984). Figure 13.10a shows a computer simulated growth 
pattern for the seeds of a s u ~ o w e r  which has been produced using a growth angle 
of 2dz. This pattern is  gene^^ by d e t e ~ ~ n g  the angular position of the seeds 
as 2m/z (for integer n) and their radial positions on the basis of the previous 
radius of the flower. The pattern of Fig. 13.10a is similar to that of the real 

Fig. 13.8. Schematic illustration ofthe seed bearing scales on the base of a typical pinecone. Line a shows 
one ofthe 13 clockwise spirals and line 6 shows one o f  the 8 counter clockwise spirals. 
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Fig. 13.9. Seed pattern on a sunflower. From Brandmiiller (1992), copyright World Scientific Publishing. 

s u ~ o w e r  shown in Fig. 13.9. In pa~icular, the a~angement of different ~ ~ b e r s  
of ciockwise and countercl~kwise spirals is seen. Using the same method of 
producing a computer generated flower but with a growth angle of 216(21/13), i.e. 
the eighth rational approximant of ‘I; the pattern shown in Fig. 13. lob is obtained. 
This pattern bears little resemblance to the real sunflower. Specifically, the 
angular position of the seeds takes on a Iimited number of different values 
resulting in radial arms in the structure. Since the angular position of the seeds is 
generated by the expression Zm/(21/13) then only 21 different values for the angle 
can be generated. A reasonable model of a compound flower can be produced only 
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Fig. 13.10. Computer generated seed pattern fix a suntlowcr obtained using growth anglea of (a) 2dr 
(radians) (= 222.492O) and (b) 2d(21/13) (radians) (= 222.857O). Reprioted with permission from Rivier 
et aL, J. Physique 45 (1984) 49. 
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Fig. 13.1 1. Schematic iIlu~ation of a pineapple showing the two clockwise and one counter dockwise sets 
of spirals. Adapted from Coxeter ( I  96 1). 

by using a rational approximant of order n, i.e. FdF,,, to give a growth angle 
27d(F,,+l/Fn) where n is suffkiently large that F,,+, is at least as large as the number 
of seeds around the circumference of the flower. 

Pineapples 

The spiral pattern of the scales on the surface of a pineapple is readily seen if 
the pineapple is unrolled to yield a two ~mensiona1 represen~tion as shown in 
Fig. 13.1 1, Three sets of spirals are visible and are i n d ~ ~ ~ ~  in the figure. Ths 
pattern of scales is readily produced by a ~ m p u t e r  simulation using a growth 
angle of 2n~2,2. 
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Fig. 13.12. Schematic illustration of the spiral structure of the chambered nautilus [Nuutilus pompilius]. 
The intemal structure of the growth chambers can be seen. 

Mollusks 

Probably the most striking example of spiral growth related to the golden ratio 
in the Phylum Mollusca is seen in the chambered M U ~ ~ ~ U S  (Nautilus pompilius). 
This animal is illustrated in Fig. 13.12. The nautilus is in the Class Cephalopodu, 
which also contains squid and octopuses. Only a single genus of nautilus is known 
to exist at present although the fossil record indicates that a proliferation of genera 
existed during the Paleozoic and Mesozoic periods. The shell is comprised of a 
number of chambers and in this way is distinct from the shells of the Subclass 
Gastropodu. As the animal grows it constructs larger and larger chambers in the 
form of a spiral, sealing off the smaller unused chambers. The shape of the spiral 
of the chambered M U ~ ~ ~ U S  has been considered by Cook (1979). The relative 
volumes of consecutive chambers is related to the golden ratio. It is generally 
considered that this quantity is of relevance to the growth of biological organisms 
because it is the basis of a series which is both arithmetic and geometric in nature. 
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APPENDIX I 

CONSTRUCTION OF THE REGULAR PENTAGON 

The= are several method of constructing a regular pentagon with a straight edge 
and a compass. They are aU, mote or less, equivalent in that they rely upon the 
constmction oftwo line segments with a length ratio of 1 to r. The method described 
below is, thedo=, not unique but is repmntative of this type of comuction. The 
inshudions refer to Fig. Al . l .  

(I) Constnrct a square ABCD. The edge length of the square, length AB, will be the 

(2) Locate the midpoint of edge AB of the square, labelled E. 
(3) Set the compass to draw a circle with a radius equal to the line segment EC and 

draw an arc, arc 1 in the figure using point Eas the center, h m  point Cback 
down to an extension of the base of the square. This will f i e  point F. 

(4) Set the compass to draw a circle wi tha radius equal to the lengthAB. Draw an arc, 
arc 2, withA as the center. 

(5 )  Draw another arc of radiusAB, arc 3, with point Fas the center. Arcs 2 and 3 will 
intensect at the point defined as G. 

(6) Set the compass to a radius equal to the 1engthAF and draw an arc with G as the 
center, arc 4. This wiU intersect arcs 2 and 3 at points Hand 1, respectively. 

(7) Points AGHH define the vertices of a regular pentagon. 

When this construction is performed it is best to make the pentagon as large as 
posa’ble as this will improve the aawacy in locating the points. It is also important to 
be canSY in setting the compass as small differences in the radii of the arcs will have a 
mly substantial effect on the location of points Hand 1. 

edge length of the resulting pentagon. 
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APPENDM II 

"HE FIRST 100 FIBONACCI AND LUCAS NUMBERS 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

0 
1 
1 
2 
3 
5 
8 

13 
21 
34 
55 
89 

144 
233 
377 
6 10 
987 

1597 
2584 
4181 
6765 

10946 
1771 1 
28657 
46368 

2 
1 
3 
4 
7 

11 
18 
29 
47 
76 

123 
199 
322 
52 1 
843 

1364 
2207 
3571 
5778 
9349 

15127 
24476 
39603 
64079 

103682 
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25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

75025 
121393 
196418 
317811 
5 14229 
832040 

1346269 
2178309 
3524578 
5702887 
9227465 
14930352 
24 157817 
3 9088 169 
63245986 

102334155 
165580141 
2679 142% 
433494437 
701408733 
134903 170 

183631 1903 
297 12 15073 
4807526976 
7778742049 

12586269025 
203650 11074 
32951280099 
533 16291 173 
86267571272 

139583 862445 
225851433717 
3654352%162 
59 1286729879 
95672202604 1 

1548008755920 
250473078 1% 1 

16776 1 
27 1443 
439204 
7 10647 

114985 1 
1860498 
3010349 
4870847 
7881196 

12752043 
20633239 
33385282 
54018521 
87403803 

141422324 
228826127 
37024845 1 
599074578 
969323029 

1568397607 
2537720636 
4 106 1 18243 
6643838879 

10749957 122 
17393796001 
28143753123 
45537549124 
73681302247 

1192 18851371 
192900153618 
3 12 1 19004989 
505019158607 
817138163596 

1322157322203 
2139295485799 
346 1452808002 
5600748293 80 1 
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62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
% 
97 

4052739537881 
65574703 19842 

10610209857723 
17167680177565 
27777890035288 
449455702 12853 
72723460248141 

117669030460994 
190392490709135 
30806 1521 170 129 
49845401 1879264 
8065 15533049393 

1304969544928657 
21 1 1485077978050 
34 16454622906707 
5527939700884757 
8944394323791464 

1447233402467622 1 
23416728348467685 
37889062373 143906 
61305790721611591 
99194853094755497 

160500643816367088 
25969549691 1122585 
4201 96 140727489673 
6798916376386 12258 

1100087778366101931 
17799794160047 14189 
2880067194370816120 
46600466 10375530309 
75401 13804746346429 

12200 160415 12 1876738 
197402742 19868223 167 
31940434634990099905 
5 1680708854858323072 
8362 1143489848422977 

9062201101803 
14662949395604 
23725 150497407 
38388099893011 
62 1 132503 904 18 

100501350283429 
1626 14600673847 
263 115950957276 
42573055 163 1123 
688846502588399 

11 14577054219522 
1803423556807921 
29180O0611027443 
4721424 167835364 
7639424778862807 

12360848946698171 
2oooO273725560978 
32361 122672259149 
52361396397820127 
847225 19070079276 

1370839 15467899403 
22 1806434537978679 
358890350005878082 
58069678454385676 1 
93 9587 134549734843 

15202839 1909359 1604 
245987 1053643326447 
3980154972736918051 
6440026026380244498 

10420 180999 1 17 162549 
16860207025497407047 
272803880246 14569596 
441405950501 11976643 
71420983074726546239 

115561578124838522882 
186982561 199565069121 
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98 1353018523447~74~49 302544 139324403592003 
99 2 18922995834555 169026 489526700523968661 124 

100 35422484817926 19 15075 792070839848372253 127 
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RELATIONSHIPS INVOLVING THE GOLDEN RATIO 
AND GENERALIZED FIBONACCI NUMBERS 

The relationships given in this appendix provide infonnation concerning the 
golden ratio as well as Fibonacci, Lucas and generalized Fibonacci numbers. Some 
of t  hese relationships h ave b een proven in  the text while o ther a re p rovided here 
without proof. In the following r is the golden ratio, 4 = -l/r, a is the Tribonacci 
number, F,,, L, and Tn are Fibonacci, Lucas and Tribonacci numbers, respectively, 
and G, are generalized Fibonacci numbers. This table is not intended to be 
comprehensive. Further relations may be found in Vajda (1 989). 

Fundamental recursion relations 

F-,, = (-l),+’ F, 

L-, = (-1y L, 

143 

(A3.1) 

(A3.2) 

(A3.3) 

(A3 -4) 

(A3.5) 

(A3.6) 
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Relations involving Fibonacci and Lucas numbers 

(A3.7) 

(A3.8) 

(A3.9) 

(A3.10) 

(A3.11) 

(A3.12) 

(A3.13) 

(A3.14) 

(A3.15) 

(A3.16) 

(A3.17) 

(A3.18) 

(A3.19) 

A3.20) 

(A3.21) 

(A3.22) 

(A3.23) 
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2 2 L,-2L2, =-5F, 

L,, - 2(-1)" = 5Ff 

5Fn2 - L: = 4(-1)@+' 

= F2n+I -1 (n odd) 

3F, + L, = 2 Fn+2 

5F, + 3L, = 2L,+, 

'?,+I4 = Gn+l +1 

L, = F,, + 2F,-, 

(n even) 

L,  = Fn+3 - 2F, 

Relationships involving generalized Fibonacci numbers 

Relationships involving sums of Fibonacci and related numbers 

(A3.24) 

(A3.25) 

(A3.26) 

(A3.27) 

(A3.28) 

(A3.29) 

(A3.30) 

(A3.31) 

(A3.32) 

(A3.33) 

(A3.34) 

(A3.35) 

(A3.36) 

(A3.37) 
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2n 
XGiG,-, = G2, 2 - G i  

2 4  

i=l 

i=l 

(A3.38) 

(A3.3 9) 

(A3.40) 

(A3.4 1) 

(A3.42) 

(A3.43) 

(A3.44) 

fA3.45) 

(A3.46) 

(A3.47) 

(A3.48) 

www.riazisara.irاز سايت رياضي سرادانلود



Reia~ionships Involving the Golden Ratio and Generalized Fibonacci Numbers I47 

g = 2  
i= I 

n 

5c F;: F,-i = (n + I)Ln - 2 Fnt = nLn - F, 
i=O 

n 

C Li L,,-,. = (n + 1)L, + 2Fn+, = (n + 2)L,  + F, 
i = O  

Limiting series ratios 

(A3.49) 

(A3.50) 

(A3.51) 

(A3.52) 

(A3.53) 

(A3.54) 

(A3.55) 

(A3.56) 

(A3.57) 

(A3.5 8) 
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Basic relationships jnvolving the golden ratio and related numbers 

&+ 1 r=r- 
2 

(A3.59) 

(A3.60) 

(A3.61) 

(A3.62) 

(A3.63) 

(A3.64) 2 r - r - l=O 

(A3.65) 

(A3.66) 

(A3.68) r - = -(z -+ 1) 
4 
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F, =-(A#") 1 

Js 
L,, = r n + # "  

n20 

n> 1 

Fn+t = trunc(rFn + 1) n>l 

(A3.69) 

(A3.70) 

(A3.71) 

(A3.72) 

(A3.73) 

(A3.74) 

(A3.75) 

(A3.76) 

(A3.77) 

(A3.78) 
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Relationships involving binomial coeMieients 

(A3.79) 

(A3.80) 

(A3.81) 

(A3.82) 

(A3.83) 

(A3.84) 

(A3.85) 

(A3.86) 

(A3.87) 

(A3.88) 
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fA3.89) 

(A3.90) 

(A3 .!-I 1) 

(A3.92) 
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